


Mechanically interlocked molecules: design, synthesis, and applications

Dr. Abed Saady- School of Chemistry, University of Birmingham, UK.

Mechanically interlocked molecules (MIMs) such as rotaxanes and catenanes (Figure 1)ⁱ have been transformed from mere synthetic curiosities to functional materials with practical applications in a range of fields: artificial molecular machines, smart materials, catalysis, molecular recognition, and sensing among othersⁱⁱ thanks to the different synthetic methodologies that had been developed over the years.ⁱⁱⁱ

In the first part of the talk, I will discuss the different chiral auxiliary methodologies that have been developed for the active-template stereoselective syntheses of mechanically chiral rotaxanes and catenanes.^{iv} In addition, I will present how a single, simple amino-acid-derived macrocycle bearing a chiral auxiliary mediates the formation of both catenanes and rotaxanes in excellent stereoselectivity.^v

In the second part of the talk, I will discuss a new general approach to stimuli-responsive cleavable macrocycles (e.g. chemical, photochemical, enzymatic) based on a bipyridine motif and the application of the latter in the synthesis of stimuli-responsive rotaxanes and catenanes.^{vi} In addition, I will show that this platform can be applied to other macrocycles for rotaxane synthesis (e.g. crown ether) demonstrating the versatility of this chemistry.

Figure 1. Schematic representation of a [2]rotaxane (i) and a [2]catenane (ii).

References

- ⁱ *Angew. Chem. Int. Ed.* **2017**, *56*, 11094-11125.
- ⁱⁱ *Chem. Soc. Rev.* **2019**, *48*, 5016-5032.
- ⁱⁱⁱ *Chem. Soc. Rev.* **2017**, *46*, 2577-2591. *Chem.* **2023**, *9*, 2110-2127.
- ^{iv} *Chem.* **2020**, *6*, 1914–1932. *Nature Chem.* **2022**, *14*, 179-187.
- ^v *Chem.* **2023**, *9*, 1195-1207.
- ^{vi} Saady et.al 2023, under review.