Documenting the brain drain of « la crème de la crème »:
Three case-studies on international migration at the upper tail of the education distribution

Frédéric Docquiera and Hillel Rapoportb

a IRES, Université Catholique de Louvain, IZA and CReAM
b Department of Economics, Bar-Ilan University, EQUIPPE, Université de Lille II, CReAM and CEPREMAP

July 2009.

Abstract

Most of the recent literature on the effects of the brain drain on source countries consists of theoretical papers and cross-country empirical studies. In this paper we complement the literature through three case studies on very different regional and professional contexts: the African medical brain drain, the exodus of European researchers to the United States, and the contribution of the Indian diaspora to the rise of the IT sector in India. While the three case studies concern the very upper tail of the skill and education distribution, their effects of source countries are contrasted: clearly negative in the case of the exodus of European researchers, clearly positive in the case of the Indian diaspora’s contribution to putting India on the IT global map, and mixed in the case of the medical brain drain out of Africa.

JEL Codes: F22, J24, O15.

Key words: Brain drain, international migration, African medical brain drain, European brain drain, Indian diaspora.

1 This paper is part of a broader survey project on the brain drain under preparation for the Journal of Economic Literature. Docquier acknowledges financial support from the Belgian Federal Government (PAI grant P6/07 Economic Policy and Finance in the Global Equilibrium Analysis and Social Evaluation) and from the Marie-Curie research and training network TOM (Transnationality of migrants). Rapoport acknowledges support from the Adar Foundation at Bar-Ilan University.
1. Introduction

Most of the recent literature on the effects of the brain drain on source countries consists of theoretical papers (e.g., Mountford, 1997, Vidal, 1998, Beine et al., 2001) and of cross-country empirical studies on the “brain gain” (Beine et al., 2008) and the diaspora networks channels (Kerr, 2008, Agrawal et al., 2008, Kugler and Rapoport, 2007, Docquier and Lodigiani, 2009). The main novelty of the recent literature is to show that under certain circumstances, the brain drain may ultimately prove beneficial (but of course is not necessarily so) to the source country, and to do so while at the same time accounting for the various fiscal, technological and Lucas-type externalities that were at the heart of the pessimistic models of the 1970s. Another novelty is that it is evidence-based, something which was out of reach until not long ago due to the lack of decent comparative data on international migration by educational attainment.\(^2\)

By nature, theoretical models and cross-country comparisons cannot account for the intricacies and details which are context specific. They have also abstracted (so far) from accounting for the huge heterogeneity among skilled workers, aggregating flows of workers with intermediate skills (e.g., less than 4 years of college education) and high skills (e.g., PhD holders). In this paper we complement the recent literature in that we focus on “the cream of the cream”, that is, the upper tail of the skill and education distribution. We first present general data on the international migration of very highly educated individuals, and then investigate in more details three very different regional and professional contexts: the African medical brain drain, the exodus of European researchers (mainly to the United States), and the contribution of the Indian diaspora to the rise of the IT sector in India.

2. Data: the brain drain at the upper tail of the education distribution

2.1. General figures

International migration of highly-skilled professionals (or brain drain) has increased tremendously over the last few decades, at about the same pace as trade, and has recently increased even more rapidly (by 70 percent during the 1990s only).\(^3\) By 2000, there were sixty million highly-skilled (tertiary educated) immigrants in the OECD area, or about one third of

\(^2\) See Docquier and Rapoport (2009) for a broad survey of this literature.

\(^3\) The total number of highly educated immigrants living in the OECD member countries has increased by 70 percent during the 1990s (and has doubled for those originating from developing countries) against just a 30 percent increase for unskilled immigrants.
total immigration. These highly skilled immigrants represent a tiny three percent of the European skilled workforce against more than ten percent of the skilled labor force in countries such as the United States, Canada and Australia. Given that the vast majority of these immigrants come from developing countries where human capital is very scarce, it often represents a significant loss of human capital for source countries. And indeed, some developing countries exhibit brain drain rates frequently higher than fifty percent (which is typically the case for Sub-Saharan African countries) or even eighty percent (in countries such as Jamaica and Guyana) (Docquier, Lowell and Marfouk, 2009).4

However, general emigration rates may hide heterogeneity across sectors and occupations. If emigration is concentrated in certain fields and the domestic supply of these skills is inelastic, then emigration can induce occupational shortages that may be particularly harmful for economic development. In this paper, we focus on the upper tail of the skill and education distribution: PhD holders, researchers in Science and Technology, medical doctors, information technology specialists. These professions are crucial for the R&D sector and for technological innovation (in the case of already advanced countries) and adoption (which is more relevant for developing countries), not to mention the fact that health care is a complement to human capital, implying that the quantity and quality of the medical staff strongly conditions the productivity of all other professions (Kremer, 1993). Before turning to our three case studies, we first present more focused data on PhD holders and researchers in science and technology, on the one hand, and on the medical brain drain, on the other hand.

4 See Figure 1.
Figure 1. Highly-skilled emigration rates (year 2000)
2.2. PhD holders and researchers in Science and Technology

Table 1 focuses on the emigration of PhD graduates. For 82 origin countries, we provide (i) the numbers of PhD graduates working in the US, (ii) the shares of these PhDs among US post-secondary educated immigrants by country of origin, (iii) the ratio of PhD holders living in the US to the estimated number of PhD holders trained in their country (an estimate of the emigration rate to the US of PhD holders by country of origin). To compute (i) and (ii), we use the SESTAT database of the National Science Foundation. To calculate (iii), we use UNESCO data on the flow of PhD graduates trained at origin (average 2002-2004) and assume that the flows of new PhD graduates represent 5 percent of the stock in developing countries and 4 in developed countries. The estimated emigration rate is obtained by dividing the stock living in the US by the estimated stock domestically trained.

The highest numbers of foreign PhD holders are obtained for developed countries and large developing countries such as China, Russia, Iran, Nigeria, Egypt. As a proportion of tertiary graduates living in the US, the proportion of PhD is extremely high in the cases of Slovenia, Cameroon, Georgia and Tunisia. The last columns indicates that the estimated emigration rate of PhD holders is high for Latin American countries and some African countries.

Regarding the capacity to innovate, it is also interesting to focus on researchers employed in S&T. This includes many PhD holders but also many other college graduates employed in this sector. Table 2 compares migration of researchers employed in the US R&D sector (using the SESTAT database) to UNESCO data on researchers nationally employed in S&T. We will provide researchers’ emigration numbers and rates to the US for 70 countries, including 39 developing states. The average emigration rates of developing countries (45.6 percent) exceeds that of developed countries (21.4 percent). The rate is particularly high (above 80 percent) in the cases of Cambodia, Cameroon, Colombia, Costa Rica, Ecuador, Panama or Vietnam.
Table 1. Top-30 suppliers PhD’s to the US

<table>
<thead>
<tr>
<th>PhD graduates in the US</th>
<th>Share in graduates in the US</th>
<th>Estimated mig. rate to the US</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>63153</td>
<td>Slovenia 71.4%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>24482</td>
<td>Cameroon 51.7%</td>
</tr>
<tr>
<td>Canada</td>
<td>19122</td>
<td>Georgia 46.1%</td>
</tr>
<tr>
<td>Germany</td>
<td>17840</td>
<td>Tunisia 31.8%</td>
</tr>
<tr>
<td>Russia</td>
<td>12835</td>
<td>Saudi Arabia 26.8%</td>
</tr>
<tr>
<td>South Korea</td>
<td>12172</td>
<td>Iceland 21.5%</td>
</tr>
<tr>
<td>Iran</td>
<td>8996</td>
<td>China 21.3%</td>
</tr>
<tr>
<td>France</td>
<td>7277</td>
<td>Estonia 19.6%</td>
</tr>
<tr>
<td>Poland</td>
<td>6488</td>
<td>Uzbekistan 19.6%</td>
</tr>
<tr>
<td>Japan</td>
<td>6478</td>
<td>Azerbaijan 19.6%</td>
</tr>
<tr>
<td>Mexico</td>
<td>5693</td>
<td>Switzerland 18.1%</td>
</tr>
<tr>
<td>Nigeria</td>
<td>4862</td>
<td>Croatia 18.1%</td>
</tr>
<tr>
<td>Egypt</td>
<td>4725</td>
<td>Finland 17.8%</td>
</tr>
<tr>
<td>Israel</td>
<td>4694</td>
<td>Czech Republic 17.6%</td>
</tr>
<tr>
<td>Argentina</td>
<td>4405</td>
<td>Slovakia 17.6%</td>
</tr>
<tr>
<td>Romania</td>
<td>4122</td>
<td>Austria 17.4%</td>
</tr>
<tr>
<td>Italy</td>
<td>3997</td>
<td>Israel 16.5%</td>
</tr>
<tr>
<td>Brazil</td>
<td>3952</td>
<td>Hungary 16.3%</td>
</tr>
<tr>
<td>Turkey</td>
<td>3798</td>
<td>Ghana 15.9%</td>
</tr>
<tr>
<td>Colombia</td>
<td>3787</td>
<td>Romania 15.8%</td>
</tr>
<tr>
<td>Cameroon</td>
<td>3714</td>
<td>Turkey 15.4%</td>
</tr>
<tr>
<td>Ukraine</td>
<td>3701</td>
<td>Russia 15.2%</td>
</tr>
<tr>
<td>Philippines</td>
<td>3658</td>
<td>Ethiopia 12.5%</td>
</tr>
<tr>
<td>Spain</td>
<td>3435</td>
<td>Spain 12.0%</td>
</tr>
<tr>
<td>Ireland</td>
<td>3294</td>
<td>Argentina 12.0%</td>
</tr>
<tr>
<td>Cuba</td>
<td>3246</td>
<td>Armenia 11.9%</td>
</tr>
<tr>
<td>Greece</td>
<td>2948</td>
<td>France 11.6%</td>
</tr>
<tr>
<td>Ghana</td>
<td>2909</td>
<td>Brazil 11.4%</td>
</tr>
<tr>
<td>Hungary</td>
<td>2877</td>
<td>United Kingdom 11.3%</td>
</tr>
<tr>
<td>Australia</td>
<td>2477</td>
<td>Sweden 11.2%</td>
</tr>
</tbody>
</table>

Sources: SESTAT-NSF and UNESCO.
<table>
<thead>
<tr>
<th>Developing countries</th>
<th>High-income countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>S& T researchers in the US</td>
</tr>
<tr>
<td>Algeria</td>
<td>1242</td>
</tr>
<tr>
<td>Bolivia</td>
<td>2214</td>
</tr>
<tr>
<td>Brazil</td>
<td>10980</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>4497</td>
</tr>
<tr>
<td>Myanmar</td>
<td>1727</td>
</tr>
<tr>
<td>Cambodia</td>
<td>3030</td>
</tr>
<tr>
<td>Cameroon</td>
<td>3643</td>
</tr>
<tr>
<td>Chile</td>
<td>5496</td>
</tr>
<tr>
<td>China</td>
<td>158524</td>
</tr>
<tr>
<td>Colombia</td>
<td>19362</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>4659</td>
</tr>
<tr>
<td>Cote d'Ivoire</td>
<td>288</td>
</tr>
<tr>
<td>Croatia</td>
<td>1666</td>
</tr>
<tr>
<td>Ecuador</td>
<td>7012</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>2549</td>
</tr>
<tr>
<td>Guatemala</td>
<td>1415</td>
</tr>
<tr>
<td>Indonesia</td>
<td>5163</td>
</tr>
<tr>
<td>Kazakhstan</td>
<td>1108</td>
</tr>
<tr>
<td>Latvia</td>
<td>2728</td>
</tr>
<tr>
<td>Lithuania</td>
<td>2285</td>
</tr>
<tr>
<td>Macedonia</td>
<td>80</td>
</tr>
<tr>
<td>Madagascar</td>
<td>166</td>
</tr>
<tr>
<td>Malaysia</td>
<td>7955</td>
</tr>
<tr>
<td>Malta</td>
<td>452</td>
</tr>
<tr>
<td>Mexico</td>
<td>46356</td>
</tr>
<tr>
<td>Nepal</td>
<td>1739</td>
</tr>
<tr>
<td>Pakistan</td>
<td>14682</td>
</tr>
<tr>
<td>Panama</td>
<td>7498</td>
</tr>
<tr>
<td>Paraguay</td>
<td>335</td>
</tr>
<tr>
<td>Romania</td>
<td>10900</td>
</tr>
<tr>
<td>Russia</td>
<td>35588</td>
</tr>
<tr>
<td>South Africa</td>
<td>5906</td>
</tr>
<tr>
<td>Sri Lanka</td>
<td>4652</td>
</tr>
<tr>
<td>Thailand</td>
<td>7781</td>
</tr>
<tr>
<td>Tunisia</td>
<td>2003</td>
</tr>
<tr>
<td>Turkey</td>
<td>8878</td>
</tr>
<tr>
<td>Uruguay</td>
<td>1625</td>
</tr>
<tr>
<td>Venezuela</td>
<td>8058</td>
</tr>
<tr>
<td>Vietnam</td>
<td>44236</td>
</tr>
<tr>
<td>Average</td>
<td>45.6</td>
</tr>
</tbody>
</table>

Sources: SESTAT-NSF and UNSECO
2.3. The medical brain drain

In developing countries, the size and quality of the medical sector is a key determinant of human development and economic performances (see Bhargava et al., 2001, Hagopian et al., 2004, Cooper, 2004, Bhargava and Docquier, 2008). While the number of physicians per 1,000 people is greater than 3 in most industrialized countries, it is lower than 0.25 in many developing countries (see Figure 2a). Many observers and analysts have pointed to the medical brain drain as one of the major factors leading to the under-provision of healthcare staff in developing countries (see Bundred and Levitt, 2000, or Beeckam, 2002) and, ultimately, to low health status and shorter life expectancy – hence Michael Clemens’s (2007) provocative question: do visas kill?

Two data sets can be used to document the international migration of physicians:

- Clemens and Pettersson (2006) collect data on foreign physicians and nurses from nine important destination countries (UK, US, France, Australia, Canada, Portugal, Belgium, Spain and South Africa) and compute the stock of African-born physicians living abroad by country of birth in 2000. They then evaluate the medical brain drain in relative terms, dividing the number of physicians abroad by the total number of physicians born in each origin country.

- Docquier and Bhargava (2006) use the same methodology but collect data from 17 countries (16 OECD countries and South Africa) and define migrants according to their country of training. Such data can be obtained from national medical associations and are available on an annual basis. They come up with 14 yearly observations per country covering all the countries of the world for the period 1991-2004. Regional comparisons reveal that the medical brain drain is highest in Sub-Saharan Africa (with average rates above 20% against 13% in South-Asia and less than 10% in all the other regions); the figures are relatively stable over the period.

Focusing on the year 2000, the comparison of these two data sets reveals important differences, with a correlation between the two of only .23. The “bilateral” correlations between physician immigrants stocks in the eight common destination countries are much higher (from 55 percent for South Africa to 97 percent for France and the United States). However, the stock based on country of training is usually much lower than the stock based
on country of birth (e.g., 10% in France, 5 45% in South Africa, 77% in the United Kingdom, and 82% in the United States).

Figure 2b shows the geographical distribution of the medical brain drain computed in Docquier and Bhargava (2006). The average medical brain drain is particularly severe in Sub-Saharan Africa, South Asia, East Asia and Latin America. The most affected countries exhibiting emigration rates above 40 percent are Grenada, Dominica, Saint Lucia, Ireland, Liberia, Jamaica and Fiji. Using the same dataset, Figure 2c reveals that the medical brain drain rates have increased dramatically in many African countries but also in Lebanon, Cuba, Cyprus, or the Philippines.

3. Africa’s medical brain drain

As explained above, Clemens and Peterson (2006) and Docquier and Bhargava (2006) use different definitions of the medical brain drain, by country of birth (for the former) and by country of training (for the latter). This leads to important differences in their respective estimates of the medical brain drain, as we have seen. Interestingly, the main culprit for such differences is Africa. Indeed, due to absence of local medical schools, eleven African countries have no domestically trained physician emigrants living abroad while they exhibit medical brain drain rates between 5 to 15 percent if one uses the country-of-birth criterion. Figures 3.a and 3.b illustrate the difference between these two definitions of physicians’ brain drain in the case of Africa.

3.1. Determinants of the medical brain drain

As for general migration, it is obvious that the emigration of physicians is not an exogenous process. Individual-level surveys in six African countries indicate that more than half of all physicians would like to emigrate to developed countries, in search of better working conditions and more comfortable lifestyles (Awases et al., 2003). The risks associated with caring for HIV/AIDS patients and the possibility of children of healthcare staff contracting HIV as they enter adolescence may exacerbate the medical brain drain (Awases et al., 2003; Bhargava, 2005).

5 Licensure requirements for foreign physicians are more stringent in France than in most other host countries.
Figure 2. The medical brain drain

2a. Physicians per 1,000 people, year 2004
Figure 2. The medical brain drain (cont’d)

2.b. Medical brain drain, year 2004
Figure 2. The medical brain drain (cont’d)

Figure 2c. Change in the medical brain drain, 1991-2004
Using their data set by country of training, Bhargava and Docquier (2008) estimated the determinants of the African medical brain drain. Consistently with Awases et al. (2003), countries with higher physician wages have lower emigration rates. Net enrolment in secondary education is also a positive and significant predictor of the medical brain drain, with an estimated short-run elasticity of 0.12. This result is not surprising, as higher enrolments in secondary education entail greater expenditures on education; physicians educated in such environments are likely to have better emigration prospects. More importantly, the HIV prevalence rate is a significant predictor of the medical brain drain, with a short-run elasticity of 0.07 and a long-run elasticity of 0.80; this means that a doubling of the HIV prevalence rate implies an 80 percent increase in the medical brain drain rate in the long run. This is a large effect, with important policy implications.

Using the same data set, Moullan (2008) recently analyzed the effect of bilateral health assistance on the bilateral medical brain drain. The rationale is that, by increasing health capital and infrastructure, health assistance can improve the working conditions of health professionals. His cross-section and panel analyses show that health assistance is an effective tool to retain doctors at home. However, elasticities are relatively low, suggesting that a huge amount of health assistance would be required to reduce the medical brain drain. Interestingly, total bilateral aid (health + non-health) seems to stimulate the medical brain drain under most specifications.

3.2. The case for a medical brain gain

In the spirit of the recent literature on endogenous human capital in a context of migration, we may ask whether there is a chance for a net medical brain gain. Regressing the log of domestic physicians per capita on the log of physician emigrants per capita, Clemens (2007) found a positive correlation of about 70 percent. Clearly, this correlation can be driven by the simultaneous effects of observed variables (GDP per capita, school enrolment conflicts, etc.) or unobserved variables. However, after controlling for observables and instrumenting the number of emigrants, the causal effect of emigration becomes insignificant. This analysis fails to detect any negative effect of health professionals’ emigration on the supply of healthcare staff in Africa in a cross-section analysis based on 53 observations. The author attributes this provocative result to the positive effect of emigration prospects on enrolment in medical sciences.
Figure 3. Africa’s medical brain drain in percent (year 2000)

3.a. Africa’s medical brain drain by country of birth
Figure 3. Africa’s medical brain drain (cont’d)

3.b. Africa’s medical brain drain by country of training
The absence of negative effect of emigration on domestic health worker stocks could also be due to omitted variables such as the size (and quality) of the medical training system. Physician emigration is instrumented with country size and linguistic links. However, data reveal a strong correlation between country size and both the number of medical schools (82 percent) and the annual number of domestically-trained medical graduates (60 percent). In addition, the number of schools and graduates are significantly higher in English-speaking countries or UK former colonies. Hence, it is very likely that country size and linguistic linkages exert a direct impact in the domestic supply of health workers. This causal link obviously needs to be explored in more details in future studies.

Two other studies examine the interactions between education and migration decisions in the medical sector. Although the samples are not restricted to African countries, they deliver interesting results for developing countries in general, and low-income countries in particular.

The first study by Kangasniemi et al. (2007) documents the incentive mechanism in the medical sector, using a survey of overseas doctors working in the United Kingdom. They show that 28 percent of Indian doctors surveyed (the largest group in their sample) acknowledge that the prospect of emigration affected their education decisions. This proportion increases to 37 for doctors originating from low-income countries and 29 percent for those originating from middle-income countries. In addition, the same doctors subjectively estimate that the current proportion of medical students whom effort is affected by the prospect to work abroad amounts to 36 percent for India, 46 percent for low-income countries and 41 percent for middle-income countries. Given these proportions, it is impossible to conclude that the incentive effect is not large enough to increase the skills-supply in origin countries. The key question is: would these doctors or students have opted for medical studies without such emigration prospects? Basically, a necessary condition for a brain gain is that the proportion of students reacting to emigration prospects exceeds the actual emigration rate. The survey suggests that this is likely to be the case for many low-income countries, including most African countries. In addition, doctors remit income to their home countries and many intend to return after completing their training in the UK, so there could be additional benefits via these routes.

In the second study, Defoort (2009) regresses the change in native health professionals on past medical emigration rates. She took advantage of the panel structure of the Docquier-Bhargava’s data set and worked with 5 observations per country (one observation every 3 years). Using different methods (fixed effects vs random effects, GLS, IV, GMM), she found
evidence of a positive incentive effect in low-income countries. Using simulations, she found an optimal medical brain drain rate of 9 percent. She concludes that only 20 African counties suffer from the medical brain drain while about 30 countries would actually gain (in terms of physicians per capita) from an increase in medical emigration rates.

3.3. Impact on health.

Since 1990, the world’s countries and leading development institutions have agreed on a set of “Millennium Development Goals” (MDG). The Millennium Declaration, signed in 2000, established 2015 as the deadline for achieving the MDG. The eight goals include specific health targets: (i) reducing by two thirds the mortality rate among children under five, (ii) reducing by three quarters the maternal mortality ratio and achieving universal access to reproductive health, (iii) combat HIV/AIDS, malaria and other diseases. Much progress has been made in reducing maternal deaths in developing regions, but not in the countries where giving birth is most risky, and many countries are still falling short of meeting the goals.

Is the medical brain drain partly responsible for these bad records? Using the methodology described above, Clemens (2007) found no significant causal impact of the numbers of physicians and nurses abroad on child mortality, infant mortality under age one, vaccination rates or prevalence of acute respiratory infections in children under age five. Chauvet et al. (2008) investigated the determinants of child mortality using a sample of 98 developing countries from 1987 to 2004. In their benchmark full-sample regressions, remittances strongly improve health indicators while health aid per capita and the number of physicians per 1,000 people have no significant impact. However, when interacted with the level of development, health aid commitments become significant and help reducing child mortality in poorer countries, while the number of physicians per 1,000 people has no significant impact. Interestingly, the supply of healthcare staff does not significantly reduce infant and child mortality rates. However, the medical brain drain is shown to significantly deteriorate child health indicators. This suggests that emigrants could positively self-select out of the physicians’ population, with only the most talented obtaining a qualification abroad and leaving. In Bhargava and Docquier (2008), the medical brain drain also appears to induce detrimental effects: a doubling of the medical brain drain rate is associated with a 20 percent increase in adult deaths from AIDS. Their study also suggests that a high HIV prevalence can create a vicious circle, by increasing emigration of physicians and nurses, which can in turn increase deaths from AIDS and the numbers of orphaned children. These findings underscore
the importance of retaining physicians in Sub-Saharan African countries, especially as antiretroviral treatment becomes more widely available.

4. Europe and the global competition for talent

The new growth literature emphasizes the role of human capital on growth and competitiveness. While imitation of existing technologies requires individuals with strong technical and professional skills developed through secondary or specialized higher education, innovation is research-based and requires the presence of highly-qualified scientists and researchers (Aghion and Cohen, 2004). In the race for innovation and economic leadership, European countries have understood that preventing an exodus of European researchers is crucial. In the words of European Research Commissioner Philippe Busquin, in 2005: “Failing to do so will seriously undermine our chances of creating a genuine European internal market for knowledge and science, and also of meeting our objective of making the EU the most competitive knowledge-based economy in the world”. The EU produces more science graduates per capita (PhDs) than the US but has fewer researchers (5.36 per 1,000 workers against 8.66 in the US and 9.72 in Japan). The Lisbon Council of 1999 and the Barcelona European Council meeting of March 2002 set an official target of raising Europe’s investment in research to 3% of GDP by 2010, implying to train and hire 700,000 additional researchers. As the deadline approaches, it seems almost certain Europe will not achieve such targets, and so far the exodus of European researchers has shown no sign of weakening.

4.1. Where does Europe stand?

Let us first compare the situation of Europe to that of other countries in terms of exchange of post-secondary educated migrants. For this purpose, we use the data set of Docquier, Lowell and Marfouk (2009). Table 3 gives a detailed picture of skilled labor exchanges between EU15 countries and the rest of the world in 2000. One can see that by 2000, the EU15 exhibited a net loss of 0.120 million post-secondary educated workers in its exchanges with the rest of the world. This is clearly a lower bound since de DLM data set does not account for EU emigrants to non-OECD countries. This net deficit represented only 0.3 percent of the European skilled labor force, in sharp contrast with the huge gains (12.5 percent of the skilled labor force) in a group of countries comprising the United States, Australia, Canada and New Zealand. In addition, the European deficit of post-secondary educated workers in exchanges
with traditional immigration countries was particularly important (2.6 million individuals in 2000); it was more or less compensated numerically by the large entry of skilled workers from developing countries.

In terms of raw numbers, the relative loss of EU15 is rather low. Qualitatively, however, it is likely to be more important. The first reason is that graduates from developing countries are usually less productive than domestic graduates: for example, Dumont and Lemaître (2007) showed that the employment rate gap between natives and immigrants tends to increase with the level of schooling. The authors estimate that one-third of the difference between immigrants and natives is explained by the skill-schooling gap (variation in efficiency for a given level of schooling). This result is comforted by Coulombe and Tremblay (2009) who show that the average skill-schooling in Canada is equivalent to 3.2 years of schooling. The skill-schooling gap is country-specific and decreases with the level of development of the origin country. The second reason is that the European brain drain concerns top-skill workers. Table 4 presents estimates of the brain drain of European researchers employed in Science and Technology (S&T) or European PhD holders. Columns 1 and 2 give the emigration rates of post-secondary educated to the OECD and to the US. Column 3 gives the number of European researchers employed in S&T in the US\(^6\) divided by the sum of researchers employed in the origin country\(^7\) and in the US. Finally, column 4 gives the number of European PhD holders residing in the US\(^8\) divided by the sum of PhD holders residing in the origin country\(^9\) and in the US.

The brain drain of graduates employed in S&T is strongly correlated with the general brain drain to the US and to the OECD computed by Docquier, Lowell and Marfouk (coefficients of correlation of 64 and 70 percent, respectively). However, the brain drain in R&D is on average 5.3 times larger than the general brain drain to the US. In other words, European skilled emigration to the US is biased toward S&T activities. The biggest biases are observed in Belgium, France, the Netherlands and the United Kingdom. The brain drain of European PhD holders is less correlated with the general brain drain to the US (coefficients of correlation of 33 and 51 percent, respectively) but is still on average 2.2 times higher than for all post-secondary educated workers.

\(^6\) We use the SESTAT-NSF data set and aggregate the numbers of graduates employed in Research and Development, graduates employed in Computers and Applications, and 50 percent of graduates employed in teaching.

\(^7\) We use the OECD data set on science and technology indicators.

\(^8\) We use the SESTAT data set.

\(^9\) The stock of PhD holders is estimated by multiplying the flow of new PhD graduates by 12 (UNESCO).
Table 3. Exchanges of post-secondary educated workers between EU15 and other OECD countries (1/2)

<table>
<thead>
<tr>
<th>Emig. to EU15</th>
<th>EU15 origin country:</th>
<th>Region of origin:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUT</td>
<td>BEL</td>
</tr>
<tr>
<td>Austria (AUT)</td>
<td>0 413</td>
<td>218</td>
</tr>
<tr>
<td>Belgium (BEL)</td>
<td>605 979</td>
<td>923</td>
</tr>
<tr>
<td>Denmark (DEN)</td>
<td>193 164</td>
<td>0</td>
</tr>
<tr>
<td>Finland (FIN)</td>
<td>58 40</td>
<td>125</td>
</tr>
<tr>
<td>France (FRA)</td>
<td>2551 26069</td>
<td>2318 1501</td>
</tr>
<tr>
<td>Germany (GER-</td>
<td>44000 5511</td>
<td>4917 3730</td>
</tr>
<tr>
<td>Greece (GRE-</td>
<td>305 323</td>
<td>165</td>
</tr>
<tr>
<td>Ireland (IRE)</td>
<td>158 434</td>
<td>282</td>
</tr>
<tr>
<td>Italy (ITA)</td>
<td>1341 1565</td>
<td>531 475</td>
</tr>
<tr>
<td>Luxembourg (LUX)</td>
<td>138 4810</td>
<td>623</td>
</tr>
<tr>
<td>Netherlands (NET)</td>
<td>3444 24549</td>
<td>1060 668</td>
</tr>
<tr>
<td>Portugal (POR)</td>
<td>135 481</td>
<td>132</td>
</tr>
<tr>
<td>Spain (SPA)</td>
<td>920 4520</td>
<td>1280</td>
</tr>
<tr>
<td>Sweden (SWE)</td>
<td>1290 400</td>
<td>6680</td>
</tr>
<tr>
<td>United Kingdom (UK)</td>
<td>4966 4926</td>
<td>5232 3075</td>
</tr>
<tr>
<td>Total EU15</td>
<td>60103 74205</td>
<td>24542 44683</td>
</tr>
</tbody>
</table>

Share in total emigr. | 0.46 | 0.64 | 0.36 | 0.62 | 0.39 | 0.30 | 0.37 | 0.51 | 0.33 | 0.62 | 0.29 | 0.49 | 0.29 | 0.34 | 0.13 | 0.29 | 0.24 | 0.16 | 0.20 | 0.22 |
Table 3. Exchanges of post-secondary educated workers between EU15 and other OECD countries (2/2)

<table>
<thead>
<tr>
<th>EU15 origin countries:</th>
<th>AUT</th>
<th>BEL</th>
<th>DEN</th>
<th>FIN</th>
<th>FRA</th>
<th>GRE</th>
<th>IRE</th>
<th>ITA</th>
<th>LUX</th>
<th>NET</th>
<th>POR</th>
<th>SPA</th>
<th>SWE</th>
<th>UK</th>
<th>EU15</th>
<th>TIC</th>
<th>OECD</th>
<th>Others</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emigration to TIC</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>6999</td>
<td>2405</td>
<td>3720</td>
<td>2724</td>
<td>9379</td>
<td>38440</td>
<td>18947</td>
<td>28401</td>
<td>64</td>
<td>30259</td>
<td>2642</td>
<td>30913</td>
<td>3517</td>
<td>381348</td>
<td>582559</td>
<td>176295</td>
<td>96507</td>
<td>785418</td>
<td>1640779</td>
</tr>
<tr>
<td>Canada</td>
<td>14535</td>
<td>11395</td>
<td>10950</td>
<td>7685</td>
<td>46830</td>
<td>111710</td>
<td>19315</td>
<td>14990</td>
<td>80600</td>
<td>250</td>
<td>65655</td>
<td>31845</td>
<td>32010</td>
<td>4625</td>
<td>365420</td>
<td>817815</td>
<td>162430</td>
<td>225890</td>
<td>1518095</td>
</tr>
<tr>
<td>New-Zeland</td>
<td>495</td>
<td>210</td>
<td>576</td>
<td>165</td>
<td>759</td>
<td>4056</td>
<td>180</td>
<td>2481</td>
<td>375</td>
<td>12</td>
<td>8451</td>
<td>54</td>
<td>2931</td>
<td>366</td>
<td>8523</td>
<td>106347</td>
<td>23739</td>
<td>8091</td>
<td>79782</td>
</tr>
<tr>
<td>US</td>
<td>35509</td>
<td>21806</td>
<td>19990</td>
<td>13601</td>
<td>93769</td>
<td>387067</td>
<td>56518</td>
<td>71697</td>
<td>132333</td>
<td>1647</td>
<td>63054</td>
<td>37536</td>
<td>15394</td>
<td>31520</td>
<td>418794</td>
<td>1400236</td>
<td>489072</td>
<td>1917039</td>
<td>6603668</td>
</tr>
<tr>
<td>Total TIC</td>
<td>57538</td>
<td>35816</td>
<td>35236</td>
<td>24175</td>
<td>150737</td>
<td>541273</td>
<td>94960</td>
<td>111696</td>
<td>241709</td>
<td>1973</td>
<td>167419</td>
<td>72077</td>
<td>81248</td>
<td>40028</td>
<td>1250798</td>
<td>2906957</td>
<td>851536</td>
<td>2247527</td>
<td>8986963</td>
</tr>
<tr>
<td>Share in total emigr.</td>
<td>0.44</td>
<td>0.31</td>
<td>0.52</td>
<td>0.33</td>
<td>0.49</td>
<td>0.58</td>
<td>0.59</td>
<td>0.49</td>
<td>0.61</td>
<td>0.31</td>
<td>0.66</td>
<td>0.49</td>
<td>0.69</td>
<td>0.50</td>
<td>0.85</td>
<td>0.65</td>
<td>0.69</td>
<td>0.78</td>
<td>0.77</td>
</tr>
<tr>
<td>Emigration to OECD</td>
<td></td>
</tr>
<tr>
<td>Total EU15+TIC</td>
<td>117641</td>
<td>110021</td>
<td>59778</td>
<td>68858</td>
<td>271371</td>
<td>824282</td>
<td>154959</td>
<td>227074</td>
<td>371468</td>
<td>5936</td>
<td>240812</td>
<td>143781</td>
<td>115060</td>
<td>67484</td>
<td>1448744</td>
<td>4227268</td>
<td>1149350</td>
<td>2705848</td>
<td>11294709</td>
</tr>
<tr>
<td>Rest of OECD</td>
<td>12507</td>
<td>7027</td>
<td>8114</td>
<td>3738</td>
<td>39383</td>
<td>112241</td>
<td>6712</td>
<td>1070</td>
<td>23765</td>
<td>485</td>
<td>13922</td>
<td>1986</td>
<td>2496</td>
<td>13073</td>
<td>29733</td>
<td>276253</td>
<td>92956</td>
<td>167621</td>
<td>336036</td>
</tr>
<tr>
<td>Total OECD</td>
<td>130148</td>
<td>117048</td>
<td>67892</td>
<td>72596</td>
<td>310754</td>
<td>395233</td>
<td>6421</td>
<td>254734</td>
<td>145767</td>
<td>115757</td>
<td>80557</td>
<td>147847</td>
<td>0.65</td>
<td>0.69</td>
<td>0.78</td>
<td>0.77</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net emigration</td>
<td></td>
</tr>
<tr>
<td>EU15</td>
<td>24719</td>
<td>13506</td>
<td>10556</td>
<td>38417</td>
<td>-45907</td>
<td>-3028</td>
<td>50886</td>
<td>41112</td>
<td>94591</td>
<td>-12857</td>
<td>-88095</td>
<td>62894</td>
<td>-52807</td>
<td>-34284</td>
<td>-99701</td>
<td>0.65</td>
<td>-2609142</td>
<td>182068</td>
<td>2307746</td>
</tr>
<tr>
<td>TIC</td>
<td>54407</td>
<td>31861</td>
<td>33113</td>
<td>23285</td>
<td>127376</td>
<td>492164</td>
<td>91321</td>
<td>99522</td>
<td>233147</td>
<td>1384</td>
<td>158377</td>
<td>71748</td>
<td>32838</td>
<td>108743</td>
<td>0 -1254571</td>
<td>0 336036</td>
<td>-182068</td>
<td>-2155471</td>
<td>8986963</td>
</tr>
<tr>
<td>Rest of OECD</td>
<td>-14107</td>
<td>1095</td>
<td>366</td>
<td>2639</td>
<td>-17089</td>
<td>-98400</td>
<td>3799</td>
<td>-1321</td>
<td>11160</td>
<td>-346</td>
<td>-6332</td>
<td>1134</td>
<td>-17404</td>
<td>-18777</td>
<td>-28486</td>
<td>-139255</td>
<td>118272</td>
<td>-176483</td>
<td>-115313</td>
</tr>
<tr>
<td>Other countries</td>
<td>-38110</td>
<td>-29211</td>
<td>-15789</td>
<td>-13268</td>
<td>-362789</td>
<td>-475075</td>
<td>-49123</td>
<td>-26890</td>
<td>-86366</td>
<td>-3579</td>
<td>-203206</td>
<td>-16917</td>
<td>-176020</td>
<td>-95090</td>
<td>-714314</td>
<td>-2307746</td>
<td>-8986963</td>
<td>-336036</td>
<td>0 -</td>
</tr>
<tr>
<td>Total</td>
<td>26909</td>
<td>17251</td>
<td>28246</td>
<td>51073</td>
<td>-298409</td>
<td>-84339</td>
<td>96882</td>
<td>112423</td>
<td>252532</td>
<td>-15398</td>
<td>-139255</td>
<td>118272</td>
<td>-176483</td>
<td>-115313</td>
<td>244936</td>
<td>119328</td>
<td>-1375076</td>
<td>2006063</td>
<td>11630745</td>
</tr>
<tr>
<td>% skilled labor force</td>
<td>3.2</td>
<td>0.9</td>
<td>3.5</td>
<td>5.4</td>
<td>-3.4</td>
<td>-0.5</td>
<td>8.3</td>
<td>25.0</td>
<td>6.8</td>
<td>-18.6</td>
<td>-5.7</td>
<td>19.0</td>
<td>-58.9</td>
<td>-6.7</td>
<td>3.4</td>
<td>0.3</td>
<td>-12.5</td>
<td>4.5</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Legend: TIC = Traditional immigration countries (US, Australia, Canada, New-Zeland)

Source: Docquier, Lowell and Marfouk (2007)
Table 4. Brain drain of European scientists to the US in percent

<table>
<thead>
<tr>
<th>Country of birth</th>
<th>Graduates DLM (US)</th>
<th>Graduates DLM (OECD)</th>
<th>Researchers in S&T (US)</th>
<th>PhD holders (US)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>3.7</td>
<td>13.5</td>
<td>12.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Belgium</td>
<td>1.0</td>
<td>5.5</td>
<td>12.9</td>
<td>2.3</td>
</tr>
<tr>
<td>Denmark</td>
<td>2.3</td>
<td>7.8</td>
<td>9.3</td>
<td>4.8</td>
</tr>
<tr>
<td>Finland</td>
<td>1.3</td>
<td>7.2</td>
<td>1.9</td>
<td>1.4</td>
</tr>
<tr>
<td>France</td>
<td>1.0</td>
<td>3.4</td>
<td>7.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Germany</td>
<td>2.4</td>
<td>5.7</td>
<td>18.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Greece</td>
<td>4.2</td>
<td>12.1</td>
<td>28.4</td>
<td>8.5</td>
</tr>
<tr>
<td>Ireland</td>
<td>10.6</td>
<td>33.7</td>
<td>33.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Italy</td>
<td>3.2</td>
<td>9.6</td>
<td>17.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>1.8</td>
<td>7.2</td>
<td>4.5</td>
<td>-</td>
</tr>
<tr>
<td>Netherlands</td>
<td>2.3</td>
<td>9.5</td>
<td>15.6</td>
<td>3.1</td>
</tr>
<tr>
<td>Portugal</td>
<td>4.9</td>
<td>18.9</td>
<td>11.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Spain</td>
<td>1.1</td>
<td>4.2</td>
<td>-</td>
<td>1.9</td>
</tr>
<tr>
<td>Sweden</td>
<td>1.8</td>
<td>4.5</td>
<td>6.7</td>
<td>1.6</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>4.8</td>
<td>17.1</td>
<td>29.0</td>
<td>6.2</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>1.3</td>
<td>9.6</td>
<td>-</td>
<td>11.7</td>
</tr>
<tr>
<td>Cyprus</td>
<td>4.4</td>
<td>34.2</td>
<td>52.6</td>
<td>49.2</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>2.7</td>
<td>8.5</td>
<td>12.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Estonia</td>
<td>2.5</td>
<td>9.9</td>
<td>21.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Hungary</td>
<td>4.7</td>
<td>12.8</td>
<td>24.9</td>
<td>12.5</td>
</tr>
<tr>
<td>Latvia</td>
<td>4.7</td>
<td>8.5</td>
<td>45.3</td>
<td>8.7</td>
</tr>
<tr>
<td>Lithuania</td>
<td>3.2</td>
<td>8.3</td>
<td>24.3</td>
<td>5.6</td>
</tr>
<tr>
<td>Malta</td>
<td>7.3</td>
<td>58.3</td>
<td>55.7</td>
<td>10.1</td>
</tr>
<tr>
<td>Poland</td>
<td>5.7</td>
<td>14.2</td>
<td>-</td>
<td>5.7</td>
</tr>
<tr>
<td>Romania</td>
<td>4.1</td>
<td>11.2</td>
<td>34.4</td>
<td>4.8</td>
</tr>
<tr>
<td>Slovakia</td>
<td>3.6</td>
<td>14.3</td>
<td>10.9</td>
<td>3.0</td>
</tr>
<tr>
<td>Slovenia</td>
<td>1.8</td>
<td>10.9</td>
<td>4.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Australia</td>
<td>0.8</td>
<td>2.7</td>
<td>5.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Canada</td>
<td>3.9</td>
<td>4.7</td>
<td>37.1</td>
<td>15.7</td>
</tr>
<tr>
<td>Japan</td>
<td>0.9</td>
<td>1.2</td>
<td>4.9</td>
<td>1.8</td>
</tr>
<tr>
<td>China</td>
<td>2.1</td>
<td>3.8</td>
<td>14.9</td>
<td>22.8</td>
</tr>
</tbody>
</table>

Sources: DLM (2009), SESTAT-NSF, UNESCO, OECD

4.2. EU’s brain drain and R&D policy.

The figures above clearly reveal that Europe is suffering from a large emigration of scientists and top-skill workers. Comparing US census data for 1980, 1990, 2000 and 2006, Tritah (2008) shows that Europeans emigrants are increasingly drained from the top of the distribution of skills and ladder of occupations that matter the most for the knowledge economy (engineers, researchers and university instructors). Is there any positive feedback
effect associated with the European brain drain? Clearly, given the development level of Europe, we should not expect strong incentive effects and huge amount of remittances to be observed. Return migration is more likely to play a role. Nevertheless, Tritah’s estimates suggest that returns rate in all large European countries have decreased during the 1990s compared to the 1980s, except for the UK where it has remained stable at below 40%.

The key question is then: does the emigration of European scientists’ threaten R&D performances, or do low R&D investments stimulate the brain drain? The OECD database on Main Science and Technology Indicators reveals that European investments in “knowledge” (sum of R&D expenditures, investments in software, higher-education spending) represents 3.8 percent of GDP, against 5 percent in Japan and 6.6 percent in the United States. In particular, while the 2000 Lisbon Council aimed at increasing European R&D spending from 1.8 percent in the late 1990s to 3 percent of GDP in 2010, this ratio has hardly increased and remains below 2% in 2006 a majority of countries; only Sweden (already at more than 3% in 1995) and Finland meet the objective. Figures 4.a and 4.b compare the number of researchers per 1,000 jobs in 1995 with the growth rate of this variable between 1995 and 2005. The data are taken from the OECD data base on Science and Technology indicators (October 2007). A negative slope of the regression line can be interpreted as a sign of convergence between countries. The strong convergence observed on Figure 4.a is driven by the cases of middle-income and emerging countries. On Figure 4.b, we restrict the sample to advanced countries (EU, Japan, US). The slope becomes insignificant and the R-squared is close to zero. This indicates that the number of researchers per 1,000 jobs remains much lower in Europe than in Japan or the US, which no signs of convergence since the mid-1990s.
Figure 4. Numbers and growth rate of researchers per 1,000 jobs (1995-2005)

4.a. Number of researchers per 1,000 jobs (extended OECD)

4.b. Number of researchers per 1,000 jobs (EU, Japan and US)
Looking at correlations between R&D spending and growth, Tritah (2008) shows that “countries that have increased their R&D spending more in proportion to their GDP are also those whose expatriation of scientists and engineers to the United States has increased the least”. Based on an estimated supply and demand framework, he finds the brain-drain to be a symptom of the lack of demand for skilled labor in Europe that has followed the rise in skilled labor supply in the 1990s. His analysis strongly supports the idea that expatriation of scientists and engineers is due, at least to some extent, to the lack of resources dedicated to research in their countries. Other evidence corroborates this result. In particular, low investments in knowledge also translate into low wages for scientists, unstable or unattractive jobs, competition with non PhD graduates, excess load of administrative tasks, etc., which are often cited as major push factors in opinion surveys among European researchers.\footnote{See, e.g., Le Monde (Blog), April 27, 2009: “L’exode des chercheurs européens et ses périls”.

4.3. On European Blue cards.}

Most European governments have eased restrictions on entry for skilled workers, and many are going much further, not just “letting them in” but rather engaging in what has been termed an international competition to attract talent: “Germany has made it easier for skilled workers to get visas. Britain has offered more work permits for skilled migrants. France has introduced a “scientist visa”. Many countries are making it easier for foreign students to stay on after graduating […]. Ireland's government works hard to recruit overseas talent […]. Many countries regard universities as ideal talent-catching machines, not only because they select students on the basis of ability but also because those students bring all sorts of other benefits, from spending money to providing cheap research labor. France is aiming to push up its proportion of foreign students from about 7% now to 20% over time. Germany is trying to create a Teutonic Ivy League and wants to “internationalize studies in Germany”. The global war for talent is likely to intensify. Most developed countries are already struggling to find enough doctors and teachers, and are wondering how they will manage when the baby-boomer generation retires.”\footnote{The Economist, “Opening the doors”, October 5, 2006.}

Many practical policy recommendations have been proposed by the European Commission to curb or invert the EU scientists’ brain drain. The most recent proposal, officially endorsed by the EU in 2008, is to create by 2010 a European \textit{Blue Card} meant to attract highly-qualified workers. The blue card would grant such workers and their families with rights to work and
live in the EU countries for 3 to 5 years. More precisely, the Blue Card would allow an immigrant to work in one EU country. After the first 18 months, the worker could then move to another country, but would still have to apply for a new Blue Card within a month of arrival. This is far from the initial proposal as first proposed by Jakob Von Weizsäcker from the Bruegel Institute in 2006 (Von Weizsäcker, 2006, 2008). In its current format, the Blue Card can help attenuate labor shortages for certain professions, however it is unlikely it can help Europe compensate its deficit in science and technology. Given what we know on the determinants of skilled immigrants destination choices (see our section 2.2 above), the blue card proposal appears too uncertain (with uncertainty regarding mainly chances of renewal and transferability across EU countries) and not generous enough to significantly change the attractiveness of the European labor market for scientists and talented workers.

5. The Indian Diaspora and the rise of India’s IT sector

The Indian-born population in the US increased twofold (from one half to one million) over the course of the 1990s, with half of this increase being due to the arrival of skilled (i.e., tertiary educated) workers. The database of Docquier, Lowell and Marfouk (2009) reveals that there were more than one million skilled Indian emigrants worldwide in 2000, placing India second just to the Philippines among developing countries for the number of skilled emigrants living in the OECD area, and almost on par with the Philippines after excluding people arrived before age 22, as shown in Beine et al. (2007). As is well known, Indians also represent the bulk of H1-B visas holders in the US (see Table 5), a visa category aimed at skilled professionals in sectors with occupational shortages (in practice, software engineers and programmers).
Table 5: Number of H1B visas delivered to Indian immigrants, 1998-200812

<table>
<thead>
<tr>
<th>Year</th>
<th>India as country of Citizenship</th>
<th>Residence</th>
<th>Total</th>
<th>Percentage of total Citizenship</th>
<th>Residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>154 726</td>
<td>78 913</td>
<td>409 619</td>
<td>37.77</td>
<td>19.26</td>
</tr>
<tr>
<td>2007</td>
<td>157 613</td>
<td>81 584</td>
<td>461 730</td>
<td>34.14</td>
<td>17.67</td>
</tr>
<tr>
<td>2006</td>
<td>125 717</td>
<td>67 292</td>
<td>431 853</td>
<td>29.11</td>
<td>15.58</td>
</tr>
<tr>
<td>2005</td>
<td>102 382</td>
<td>55 873</td>
<td>407 418</td>
<td>25.13</td>
<td>13.71</td>
</tr>
<tr>
<td>2004</td>
<td>83 536</td>
<td></td>
<td>387 147</td>
<td>21.58</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>75 964</td>
<td></td>
<td>360 498</td>
<td>21.07</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>81 091</td>
<td></td>
<td>370 490</td>
<td>21.89</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>104 543</td>
<td></td>
<td>384 191</td>
<td>27.21</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>102 453</td>
<td></td>
<td>355 605</td>
<td>28.81</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>85 012</td>
<td></td>
<td>302 326</td>
<td>28.12</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>62 544</td>
<td></td>
<td>240 947</td>
<td>25.96</td>
<td></td>
</tr>
</tbody>
</table>

Given its high ranking and standing as an exporter of skilled professionals and talented individuals, India has been the subject of a large amount of brain drain oriented research. The presence of highly educated Indians among the business, scientific and academic elites of England, the US, and other Western countries, is impressive and has long been both a matter of national pride and of persistent concern. Echoing this ambivalence, Desai et al. (2009) evaluated the fiscal cost of the brain drain for India at 0.5 percent of Indian GDP or 2.5 percent of total Indian fiscal revenues, a “conservative” estimate in their view. However, their computations are based on the assumption that all Indian engineers abroad would have worked as engineers in India, and would have engaged in engineering studies in the first place, which is disputable. While it is clear that many of them would not have worked as engineers if it was not for the possibility of migration, the no-migration counterfactual is not clear. If one assumes that in alternative occupations their wages would have been lower, then Desai et al. (2009) fiscal loss estimates could instead be seen as an upper bound. In fact, many of them end up in managerial jobs (for example, 52 percent of the graduates of IIT-Bombay of 2005-6 ended up in consulting and finance), which are much higher paying occupations in India than engineering, and accounting for this would indeed push the fiscal loss estimates upwards. Perhaps more importantly, if the loss is not that of engineers per se but a selection

12 Courtesy of Devesh Kapur.
bias in which entrepreneurial talent is lost, then the tax losses are on corporate and VAT/sales taxes and not income taxes on which Desai et al. (2009) focused on.

In any event, the last years have seen a gradual reversal in media and public attitudes in India, and it is now common to celebrate the contribution of the Indian diaspora to the country’s industrial and economic success. India has already been frequently cited in the recent literature to exemplify the potential for a diaspora to foster technology and knowledge diffusion (Kerr, 2008, Agrawal et al., 2008) or the contribution of return migration to the home economy (Agrawal et al., 2008, Saxeenian, 2006). In what follows we will focus on the role of the Indian diaspora, especially that established in the Silicon Valley, in the rise of the Indian IT sector in India. We will base our account mainly on the works of Saxenian (1999, 2002), Arora and Gambardella (2005), Kapur and McHale (2005), Commander et al. (2008), and Kapur (2009, Chapter 4).

The first study to point to the potential role of the Indian diaspora in the rise of the software industry in India is the well known work of Saxenian (1999), who noted the large implication of Indian (and Chinese) entrepreneurs in the Silicon Valley: Indians were shown to run 9 percent of Silicon Valley start-ups from the period 1995 to 1998, with a majority of these start-ups (nearly 70 percent) in the software sector. A more recent survey (Wadhwa et al., 2007) shows the last decade has been even more impressive in terms of Indian-born entrepreneurs’ share in the US high-tech sector: it shows that out of an estimated 7,300 U.S. tech start-ups founded by immigrants between 1995 and 2005, 26 percent have Indian founders, CEOs, presidents or head researchers—more people than from the four next biggest sources (United Kingdom, China, Taiwan and Japan) combined. Indian immigrants outpaced their Chinese counterparts as founders of engineering and technology companies in Silicon Valley, with Indians being key founders of 15.5 percent of all Silicon Valley startups, mainly in the fields of software (for 46 percent of them) and innovation/manufacturing-related services (44 percent).

Saxenian (2002) then proceeded to explore not just the potential but the actual business links with India. In her survey of Indian (and Chinese) members of professional associations in the Silicon Valley, she shows that these links are indeed important: for instance, 77 percent of the respondents had one or more friends who returned to India to start a company, 52 percent used to travel to India for business purposes on a regular basis (at least once a year), 27 percent reported regularly exchanging information on jobs/business opportunities with those

13 As evidenced for example by Saxenian (2006).
back home, 33 percent reported regular exchanges of information on technology. In addition, 46 percent had been a contact for domestic Indian businesses, and 23 percent claimed to have invested their own money into Indian start-ups. Last but not least, when asked about the possibility of return migration, 45 percent reported returning as somewhat or quite likely.

Such results must be taken with caution as they are based on a non-representative sample (due to self-selection into the professional associations surveyed and to the choice to respond to the survey). As Kapur and McHale (2005) note, “these figures contradict what is known about the activities of Indian diaspora from other sources, so that the survey’s results need to be treated with some caution. One problem is that the investment data is silent on the magnitude of investments. Foreign direct investment from the Indian diaspora is less than 5 percent of its Chinese counterparts—even though the propensity to invest is comparable for the two diasporas in Saxenian’s survey. Similarly, the finding that 45% would consider returning is belied by reality. While aggregate data on return migration is unavailable, segment specific data such as NSF longitudinal data on PhD students suggests a number closer to 5 percent.”

Still, Saxenian’s results are suggestive of strong connections between the Silicon Valley resident Indians and those in India. And indeed, the role of the Indian diaspora has been singled out as a primary factor of India’s emergence on the global IT scene. As Kapur (2002) put it, “One of the puzzles about the explosive growth of India’s IT sector is how and why India has emerged as a global leader in a leading edge industry when, despite strenuous (and, in retrospect, misguided) policies, it failed to achieve such leadership in any other technology intensive sector. The issue is even more puzzling if one keeps in mind that conventional indicators of IT penetration, such as personal computers (PCs) per thousand population, internet subscribers, telephone connections, scientists and engineers per million, all make India look decidedly mediocre”. To solve this puzzle, Kapur (2002, 2009) first reviewed what he presents as proximate causes of the Indian IT sector success, namely, the lack of State intervention and the flexibility of the labor market in the IT sector, and then turns to what he sees as the root causes. Chief among them is… the brain drain, whose beneficial effects, he argues, have been multifaceted. Paraphrasing Kapur’s account and linking his analysis to the general arguments put forward in the recent literature on the effects of emigration on home countries, the following channels may be emphasized:

- A first windfall from India’s brain drain is that it has provided prospective investors with information on the quality of the Indian labor force and created virtuous

14 The overall response rate was 21 percent.
reputational spillovers, sparking demands for Indian IT specialists in countries without previous Indian migration experience (e.g., Germany, Japan) as well as international demand for IT services exported from India.15 This is very much in line with the general argument about an information and transaction cost channel, especially with the argument that migrant workers, skilled or unskilled, can convey information and reduce transaction costs through their sheer presence in the host countries labor markets. Evidence of such information and transaction cost effects contributing to foster FDI from host to home countries can be found in studies using bilateral (Kugler and Rapoport, 2007, Javorcik et al., 2006, Buch et al., 2006) as well as aggregate (Docquier and Lodigiani, 2009) data.

- Second, the overseas Indian presence has helped in the diffusion of knowledge through a variety of mechanisms: substantial skill upgrades for those who worked in the US, with diffusion to India through return migration and brain circulation. This is a perfect illustration of another channel put forward in the recent brain drain literature, namely, the knowledge and technology diffusion channel, as well as additional evidence of the brain circulation (or return migration with additional skills and human capital). As such, this confirms recent studies using patent citation data to measure the international diffusion of knowledge and innovation through diaspora networks (Kerr, 2008, Agrawal et al., 2008).

- Third, the diaspora has been an effective partner in setting up sectoral institutions and networks who successfully lobbied the Indian government to change the regulatory framework for venture capital in India. While this example is restricted to a particular sector, it is not difficult to imagine that once such lobbying organizations are in place, with their set-up costs already incurred, they can also be activated towards achieving broader political and institutional reforms. This exemplifies the type of institutional reform towards better regulations and more effective economic and political institutions emphasize in the recent brain drain literature in the effects of skilled emigration and foreign students on home countries institutions and governance (Li and McHale, 2006, Docquier et al., 2009, Spilimbergo, 2009).

- And fourth, instead of developing a protectionist attitude by trying to keep engineers and IT specialists at home, the Indian industry has realized the potential gains from foreign experience and supported an increase in the number of H1-B visas for Indian

15 This echoes Banerjee and Duflo’s (2000) evidence that reputation affects the form of contracts that firms outsourcing customized software enter into with Indian software firms.
professionals in the US. The reason lies in changes in the market structure of the global IT industry, itself a lagged effect of previous brain drain. Ten of the largest twenty-five companies hiring foreign nationals with H-1B visas are IT firms based in India or U.S.-based IT firms run by Indian nationals. This may clearly be interpreted along the lines suggested in our introduction about the endogenous human capital formation in a context of migration, often referred to as the brain drain v. brain gain debate, and further adds to the recent evidence (e.g., Beine et al., 2008) on endogenous human capital formation and return migration as potential mechanisms possibility leading to a beneficial brain drain (or net brain gain).

Kapur’s account demonstrates the crucial role played by the Indian diaspora at the onset of the IT revolution which took place in the 1990s as well as in the later phases and goes beyond the general effects on knowledge diffusion and technology diffusion emphasized for example in the papers by Kerr (2008) and Agrawal et al. (2008). This assessment is confirmed by other surveys and analyses. For example, a recent comprehensive survey of India’s software industry showed that 30 to 40% of the higher-level employees have relevant work experience in a developed country (Commander et al., 2008). Similarly, Nanda and Khanna (2009) used a survey sent to all the CEOs of Indian software firms to study the role of diaspora links and found that entrepreneurs who live in hubs, where the local networking environment is stronger, rely on local networks and do not necessarily gain significantly from diaspora networks. More specifically, for those entrepreneurs based in smaller cities with weaker networking and financing environments, having a personal experience abroad allows for gaining access to business and financial opportunities through diaspora networks. They conclude that brain circulation is crucial as such networks, it is argued, are successful not just because of the expatriates who live abroad, but because some of the expatriates have returned back home and know how to effectively tap into the diaspora.

6. Conclusion

Most of the recent literature on the effects of the brain drain on source countries consists of theoretical papers and cross-country empirical studies. In this paper we complement the literature through three case studies on very different regional and professional contexts: the African medical brain drain, the exodus of European researchers to the United States, and the contribution of the Indian diaspora to the rise of the IT sector in India. While the three case
studies concern the very upper tail of the skill and education distribution, their effects of source countries are contrasted: clearly negative in the case of the exodus of European researchers, clearly positive in the case of the Indian diaspora’s contribution to putting India on the IT global map, and mixed in the case of the medical brain drain out of Africa.

These contrasted experiences also illustrate how difficult it is to capture the effect of skilled emigration on source countries using uniform approaches leading to uniform policy recommendations. The recent brain drain literature shows that the brain drain has a potentially strong incidence on between-country inequality. In other words, there are winners and losers, and the brain drain may in some cases contribute to speed up the pace of convergence for some countries while contributing to increased divergence in the case of other countries.16

The case studies presented in this paper complement and strengthen this view in that they show similar patterns for regions and/or professions. A straightforward implication of the above analysis is that curbing skilled emigration maybe a sound policy objective in the case of Europe (assuming it does so by becoming more "talent friendly") but would clearly be counterproductive in the case of India. Regarding specific professions, the main policy discussions so far have focused on proposals to create blacklists of high-risk occupations and/or origin countries (e.g., physicians and nurses originating from high medical brain drain countries with less than 0.5 healthcare professionals per 1,000 people). Our analysis shows that such proposals, which primarily target the African medical brain drain (see e.g., Beecham, 2002), should also be reevaluated in the light of the complex relationships between the medical brain drain, the endogenous formation of medical human capital, and the health infrastructure and general environment in Africa.

16 See, e.g., Beine et al. (2008), Mountford and Rapoport (2007), and, for a survey, Docquier and Rapoport (2009).
7. References

1-01 The Optimal Size for a Minority

2-01 An Application of a Switching Regimes Regression to the Study of Urban Structure

3-01 The Kuznets Curve and the Impact of Various Income Sources on the Link Between Inequality and Development

4-01 International Asset Allocation: A New Perspective

5-01 מודל המושטים והקהילות העדריים

6-01 Multi-Generation Model of Immigrant Earnings: Theory and Application

7-01 Shattered Rails, Ruined Credit: Financial Fragility and Railroad Operations in the Great Depression

8-01 Cooperation and Competition in a Duopoly R&D Market

9-01 A Theory of Immigration Amnesties

10-01 Dynamic Asset Pricing With Non-Redundant Forwards

11-01 Macroeconomic and Labor Market Impact of Russian Immigration in Israel

Electronic versions of the papers are available at
http://www.biu.ac.il/soc/ec/wp/working_papers.html
12-01 **Network Topology and the Efficiency of Equilibrium**

13-01 **General Equilibrium Pricing of Trading Strategy Risk**

14-01 **Social Conformity and Child Labor**

15-01 **Determinants of Railroad Capital Structure, 1830–1885**

16-01 **Political-Legal Institutions and the Railroad Financing Mix, 1885–1929**

17-01 **Macroeconomic Instability, Migration, and the Option Value of Education**

18-01 **Property Rights, Theft, and Efficiency: The Biblical Waiver of Fines in the Case of Confessed Theft**
Eliakim Katz and Jacob Rosenberg, November 2001.

19-01 **Ethnic Discrimination and the Migration of Skilled Labor**
Frédéric Docquier and Hillel Rapoport, December 2001.

1-02 **Can Vocational Education Improve the Wages of Minorities and Disadvantaged Groups? The Case of Israel**
Shoshana Neuman and Adrian Ziderman, February 2002.

2-02 **What Can the Price Gap between Branded and Private Label Products Tell Us about Markups?**

3-02 **Holiday Price Rigidity and Cost of Price Adjustment**

4-02 **Computation of Completely Mixed Equilibrium Payoffs**
Igal Milchtaich, March 2002.

5-02 **Coordination and Critical Mass in a Network Market – An Experimental Evaluation**
6-02 Inviting Competition to Achieve Critical Mass
Amir Etziony and Avi Weiss, April 2002.

7-02 Credibility, Pre-Production and Inviting Competition in a Network Market
Amir Etziony and Avi Weiss, April 2002.

8-02 Brain Drain and LDCs’ Growth: Winners and Losers
Michel Beine, Frédéric Docquier, and Hillel Rapoport, April 2002.

9-02 Heterogeneity in Price Rigidity: Evidence from a Case Study Using Micro-Level Data

10-02 Price Flexibility in Channels of Distribution: Evidence from Scanner Data

11-02 Acquired Cooperation in Finite-Horizon Dynamic Games
Igal Milchtaich and Avi Weiss, April 2002.

12-02 Cointegration in Frequency Domain

13-02 Which Voting Rules Elicit Informative Voting?
Ruth Ben-Yashar and Igal Milchtaich, May 2002.

14-02 Fertility, Non-Altruism and Economic Growth: Industrialization in the Nineteenth Century
Elise S. Brezis, October 2002.

15-02 Changes in the Recruitment and Education of the Power Elites in Twentieth Century Western Democracies
Elise S. Brezis and François Crouzet, November 2002.

16-02 On the Typical Spectral Shape of an Economic Variable

17-02 International Evidence on Output Fluctuation and Shock Persistence

1-03 Topological Conditions for Uniqueness of Equilibrium in Networks
Igal Milchtaich, March 2003.

2-03 Is the Feldstein-Horioka Puzzle Really a Puzzle?
3-03 **Growth and Convergence across the US: Evidence from County-Level Data**
Matthew Higgins, Daniel Levy, and Andrew Young, June 2003.

4-03 **Economic Growth and Endogenous Intergenerational Altruism**
Hillel Rapoport and Jean-Pierre Vidal, June 2003.

5-03 **Remittances and Inequality: A Dynamic Migration Model**
Frédéric Docquier and Hillel Rapoport, June 2003.

6-03 **Sigma Convergence Versus Beta Convergence: Evidence from U.S. County-Level Data**

7-03 **Managerial and Customer Costs of Price Adjustment: Direct Evidence from Industrial Markets**

8-03 **First and Second Best Voting Rules in Committees**
Ruth Ben-Yashar and Igal Milchtaich, October 2003.

9-03 **Shattering the Myth of Costless Price Changes: Emerging Perspectives on Dynamic Pricing**

1-04 **Heterogeneity in Convergence Rates and Income Determination across U.S. States: Evidence from County-Level Data**

2-04 **“The Real Thing:” Nominal Price Rigidity of the Nickel Coke, 1886-1959**

3-04 **Network Effects and the Dynamics of Migration and Inequality: Theory and Evidence from Mexico**
David Mckenzie and Hillel Rapoport, March 2004.

4-04 **Migration Selectivity and the Evolution of Spatial Inequality**

5-04 **Many Types of Human Capital and Many Roles in U.S. Growth: Evidence from County-Level Educational Attainment Data**
6-04 **When Little Things Mean a Lot: On the Inefficiency of Item Pricing Laws**

7-04 **Comparative Statics of Altruism and Spite**
Igal Milchtaich, June 2004.

8-04 **Asymmetric Price Adjustment in the Small: An Implication of Rational Inattention**

1-05 **Private Label Price Rigidity during Holiday Periods**

2-05 **Asymmetric Wholesale Pricing: Theory and Evidence**

3-05 **Beyond the Cost of Price Adjustment: Investments in Pricing Capital**

4-05 **Explicit Evidence on an Implicit Contract**
Andrew T. Young and Daniel Levy, June 2005.

5-05 **Popular Perceptions and Political Economy in the Contrived World of Harry Potter**

6-05 **Growth and Convergence across the US: Evidence from County-Level Data (revised version)**

1-06 **Sigma Convergence Versus Beta Convergence: Evidence from U.S. County-Level Data (revised version)**
Andrew T. Young, Matthew J. Higgins, and Daniel Levy, June 2006.

2-06 **Price Rigidity and Flexibility: Recent Theoretical Developments**

3-06 **The Anatomy of a Price Cut: Discovering Organizational Sources of the Costs of Price Adjustment**
4-06 **Holiday Non-Price Rigidity and Cost of Adjustment**
Georg Müller, Mark Bergen, Shantanu Dutta, and Daniel Levy.
September 2006.

2008-01 **Weighted Congestion Games With Separable Preferences**
Igal Milchtaich, October 2008.

2008-02 **Federal, State, and Local Governments: Evaluating their Separate Roles in US Growth**

2008-03 **Political Profit and the Invention of Modern Currency**
Dror Goldberg, December 2008.

2008-04 **Static Stability in Games**
Igal Milchtaich, December 2008.

2008-05 **Comparative Statics of Altruism and Spite**
Igal Milchtaich, December 2008.

2008-06 **Abortion and Human Capital Accumulation: A Contribution to the Understanding of the Gender Gap in Education**

2008-07 **Involuntary Integration in Public Education, Fertility and Human Capital**

2009-01 **Inter-Ethnic Redistribution and Human Capital Investments**
Leonid V. Azarnert, January 2009.

2009-02 **Group Specific Public Goods, Orchestration of Interest Groups and Free Riding**
Gil S. Epstein and Yosef Mealem, January 2009.

2009-03 **Holiday Price Rigidity and Cost of Price Adjustment**
Daniel Levy, Haipeng Chen, Georg Müller, Shantanu Dutta, and Mark Bergen,
February 2009.

2009-04 **Legal Tender**
Dror Goldberg, April 2009.

2009-05 **The Tax-Foundation Theory of Fiat Money**
Dror Goldberg, April 2009.
2009-06 The Inventions and Diffusion of Hyperinflatable Currency
Dror Goldberg, April 2009.

2009-07 The Rise and Fall of America’s First Bank
Dror Goldberg, April 2009.

2009-08 Judicial Independence and the Validity of Controverted Elections
Raphaël Franck, April 2009.

2009-09 A General Index of Inherent Risk
Adi Schnytzer and Sara Westreich, April 2009.

2009-10 Measuring the Extent of Inside Trading in Horse Betting Markets
Adi Schnytzer, Martien Lamers and Vasiliki Makropoulou, April 2009.

2009-11 The Impact of Insider Trading on Forecasting in a Bookmakers’ Horse Betting Market
Adi Schnytzer, Martien Lamers and Vasiliki Makropoulou, April 2009.

2009-12 Foreign Aid, Fertility and Population Growth: Evidence from Africa
Leonid V. Azarnert, April 2009.

2009-13 A Reevaluation of the Role of Family in Immigrants’ Labor Market Activity: Evidence from a Comparison of Single and Married Immigrants

2009-14 The Efficient and Fair Approval of “Multiple-Cost–Single-Benefit” Projects Under Unilateral Information
Nava Kahanaa, Yosef Mealem and Shmuel Nitzan, May 2009.

2009-15 Après nous le Déluge: Fertility and the Intensity of Struggle against Immigration
Leonid V. Azarnert, June 2009.

2009-16 Is Specialization Desirable in Committee Decision Making?

2009-17 Framing-Based Choice: A Model of Decision-Making Under Risk
Kobi Kriesler and Shmuel Nitzan, June 2009.

2009-18 Demystifying the ‘Metric Approach to Social Compromise with the Unanimity Criterion’
Shmuel Nitzan, June 2009.
2009-19
On the Robustness of Brain Gain Estimates
Michel Beine, Frédéric Docquier and Hillel Rapoport, July 2009.

2009-20
Wage Mobility in Israel: The Effect of Sectoral Concentration
Ana Rute Cardoso, Shoshana Neuman and Adrian Ziderman, July 2009.

2009-21
Shoshana Neuman and Adrian Ziderman, July 2009.

2009-22
National Aggregates and Individual Disaffiliation: An International Study

2009-23
The Big Carrot: High-Stakes Incentives Revisited

2009-24
The Why, When and How of Immigration Amnesties
Gil S. Epstein and Avi Weiss, September 2009.

2009-25
Documenting the Brain Drain of «la Crème de la Crème»: Three Case-Studies on International Migration at the Upper Tail of the Education Distribution
Frédéric Docquier and Hillel Rapoport, October 2009.

2009-26
Remittances and the Brain Drain Revisited: The Microdata Show That More Educated Migrants Remit More
Albert Bollard, David McKenzie, Melanie Morten and Hillel Rapoport, October 2009.