Cooperation and Effort in Group Contests

Gil S. Epstein¹
Bar-Ilan University, CReAM, London and IZA, Bonn
and
Yosef Mealem
Netanya Academic College, Netanya, Israel

Abstract
We consider a two group contest over a group specific public good comparing two situations: (i) when all players act independently; and (ii) when the players of each group cooperate. This comparison leads us to the conclusion that it is possible for one group to contribute more (and have a higher expected payoff) in the non-cooperative regime than in the cooperative regime.

Keywords: Contests, rent seeking, public good, easy-riding.
JEL Classification: D72, C72, H41.

¹ Corresponding author's e-mail: Gil.Epstein@biu.ac.il
Financial support from the Adar Foundation of the Economics Department of Bar-Ilan University is gratefully acknowledged.
1. Introduction

We consider a two-group contest over a group specific public good in which a member of each group can invest efforts so that the group win the contest. Our purpose is to examine the equilibrium efforts invested by individual players in each group. We consider two groups and compare two situations: (i) when all players act independently; and (ii) when each of the group players cooperates. This comparison leads us to the conclusion that, in certain circumstances, players may contribute more in scenario (i) than in scenario (ii).

Economic policy involves a struggle between interest groups: one group that defends the status-quo and another group that challenges it by fighting for an alternative policy. There may be different examples such as taxation, pollution standards, a monopoly facing opposition, capital owners and a workers' union can be engaged in a contest over minimum wages and so on. In Israel there was a public committee headed by Professor Eytan Sheshinski to determine the taxation level on natural resources which had just been found (gas). Different sides tried to affect the outcome. On the one side there was the public and on the other side were the firms leading the extraction of a natural resource which tried to affect the final outcome of the committee. The outcome of the contest depends on the stakes of the contestants, and, in turn, on their exerted efforts. These contests may involve group specific public-goods.

There exists a vast literature dealing with contests with group-specific public-good prizes. In the literature, free-riding is a well known problem in contests and it may overshadow a specific public good. For example, Nitzan (1991) presents a sharing rule to decrease the free-riding problem, while Baik (2008) studies a case of free-riding where only one player invests the effort to win the contest and the other contestants' free-ride. Cheikbossian (2008a) presents a model of endogenous public good provision and group rent-seeking influence. Specifically, two groups with different preferences over public policy and different sizes engage in rent-seeking or lobbying activities to influence policymaking in their preferred direction. When there is within-group cooperation in lobbying, both groups neutralize each other in the

3 Baik (2008) considers a model with n groups competing to win a group-specific public-good prize. The main difference between Baik's paper and ours is that while one can aggregate the total effort invested in the contest, our model can only aggregate effort after using non-linear transformation.
political process. Without within-group cooperation, the free-rider problem in lobbying makes the smaller group politically influent. In both cases, the total level of rent-seeking activities is shown to be increasing in taste heterogeneity while decreasing in group size asymmetry. In a similar type of model Epstein and Mealem (2009) consider a situation in which two groups contest a group-specific public good. They show that the level of free-riding depends on the return on investment and consider the situation in which one group initiates a contest adding different players and/or groups. The question they pose is: what would be the optimal structure of the added groups?

The early literature on coordination of games suggests that coordination failure is common in the laboratory (for example, Cooper et al., 1992). This important finding has been interpreted as relevant for environments ranging from individual organizations to macro-economies, and has led to an active research agenda to investigate possible mechanisms to resolve this coordination failure.

There is a growing literature on experimental economics of group contests with and without cooperation. Riechmann and Weimann (2008) present a means of fostering efficient coordination in minimum effort coordination games and inter-group competition. In a series of laboratory experiments they reveal that the true reason for coordination failure is strategic uncertainty which can be reduced almost completely by introducing an appropriately designed mechanism of (inter-group) competition. In a different experiment Reuben and Tyran (2010) test if cooperation is promoted by rank-order competition between groups in which all groups can be ranked first; i.e., when everyone can be a winner. This type of rank-order competition has the advantage of eliminating the negative externality which a group's performance imposes on other groups. However, its disadvantage is the absence of incentives to out-perform others; therefore, it does not eliminate equilibria where all groups cooperate at an equal but low level. Reuben and Tyran (2010) find that all-can-win competition produces a universal increase in cooperation and benefits a majority of individuals if the incentive to compete is sharp. Costless pre-play communication has been found to effectively facilitate coordination and enhance efficiency in games with Pareto-ranked equilibria. Cason, Sheremeta and Zhang (2010) report an experiment in

4 In a similar paper Cheikbossian (2008b) presents a model of endogenous public good provision and group rent-seeking influence. It is shown that when there is group cooperation with lobbying, both groups neutralize each other in the political process. However, without group cooperation, the free-rider problem in lobbying makes the smaller group politically influent.
which two groups compete in a weakest-link contest by expending costly efforts. Allowing intra-group communication leads to more aggressive competition and greater coordination than control treatment without any communication. On the other hand, allowing inter-group communication leads to less destructive competition. As a result, intra-group communication decreases while inter-group communication increases payoffs. This work provides evidence that communication can either reduce or increase efficiency in competitive coordinated games depending on different communication boundaries.

Numerous studies suggest that communication may be a universal means to mitigate collective action problems. Leibbradt and Saaksvouri (2010) challenge this view and show that the communication structure crucially determines whether communication mitigates or intensifies the problem of collective action. They observe the effect of different communication structures on collective action in the context of finitely repeated intergroup conflict and demonstrate that conflict expenditures are significantly higher if communication is restricted to one's own group as compared to a situation without communication. However, expenditures are significantly lower if open communication within one's own group and between rivaling groups is allowed.

In our paper, we consider the generalized logit contest success function. The idea behind this assumption is that one tries to affect the policy outcome at low cost such as writing an e-mail, signing a petition on the internet or sending a text message by phone. This was very common during the sessions of the Sheshinski committee. Many petitions where signed via the internet and many e-mails where sent by different members of each side of the contest. Emails and signing positions are costless. Sending the first e-mail has a stronger effect than sending the second e-mail; signing the first petition has a stronger effect than the second petition etc. Thus these investments have decreasing returns in the contest. Epstein and Mealem (2009) describe this situation in detail and present these types of effort showing them to have a low marginal cost with a decrease returns to scale.

Our main results show that the sufficient condition for one of the groups to “over invest” (invest more than under the situation in which the group cooperates) is that the number of players in this group has to be sufficiently smaller in comparison to the other group. Moreover, in the case where one of the groups invests more effort than the amount invested under cooperation, we would obtain that the expected payoff of this group would be higher than that when there is cooperation.
2. The Model

2.1. No Cooperation

Consider a contest with two groups competing for a prize as in Epstein and Nitzan (2004) and Epstein and Mealem (2009). Suppose that a status-quo policy is challenged by one interest group and defended by the other. For example, in the contest over monopoly regulations, one firm defends the status-quo, lobbying for the profit-maximizing monopoly price (and against any price regulation) while the consumers challenge the status-quo lobbying preferring a competitive price (a tight price cap).\(^5\)

Assume that in group 1 there are \(N\) players, while in group 2 there are \(M\) players. In group 1, each player has a payoff of \(n\) from winning the contest while in group 2 each player has a payoff \(m\) from winning the contest. Each player from group 1 invests \(x_i\) \((i = 1, \ldots, N)\) units to change the status-quo to the new policy and each player from group 2 invests \(y_j\) \((j = 1, \ldots, M)\) units so that the policy will not be changed.

The probability that the new policy will be accepted and the status-quo changed, \(p_x\), is a function of the resources both groups invest in the contest. It is assumed that the probability is given by the generalized logit contest success function:

\[
p_x = \frac{\sum_{i=1}^{N} x_i^\alpha}{\sum_{i=1}^{N} x_i^\alpha + \sum_{j=1}^{M} y_j^\alpha} \quad \text{with} \quad 0 < \alpha < 1
\]

We restrict our analysis to the case in which \(0 < \alpha < 1\).\(^6\) The expected payoff of each player in group 1 will equal:

\[
E(U_i) = \frac{\sum_{i=1}^{N} x_i^\alpha}{\sum_{i=1}^{N} x_i^\alpha + \sum_{j=1}^{M} y_j^\alpha} \left(n - x_i \right) \quad \forall \quad i = 1, \ldots, N
\]

and for each player in group 2:

\(^5\) See for example Epstein and Nitzan (2003, 2007).

\(^6\) For the other cases where \(\alpha = 1\) see Baik (2008). For \(\alpha > 1\) second order conditions may not hold.
\[E(U_j) = \frac{\sum_{i=1}^{M} y_j^a}{\sum_{i=1}^{N} x_i^a + \sum_{i=1}^{M} y_j^a} \quad m - y_j \quad \forall \ j = 1, \ldots, M. \]

Solving the first order conditions (it can be verified that the second order conditions hold); we obtain that the Nash equilibrium investment of the players of each of the groups equals to:

\[x_i^* = \frac{c a k \alpha M^{1-a}}{N^{\alpha}(N^{1-a} k^{\alpha} + M^{1-a})^2} (i = 1, \ldots, N) \] (4)

and

\[y_j^* = \frac{c a k \alpha N^{1-a}}{M^{\alpha}(N^{1-a} k^{\alpha} + M^{1-a})^2} (j = 1, \ldots, M), \]

where \(k = \frac{n}{m}. \) The expected payoff becomes:

\[E(U_i^*) = \frac{n k^{\alpha} [N^{2-a} k^{\alpha} + M^{1-a} (N - \alpha)]}{N^{\alpha}(N^{1-a} k^{\alpha} + M^{1-a})^2} \]

(5)

and

\[E(U_j^*) = \frac{m^{2-a} + N^{1-a} k^{\alpha} (M - \alpha)}{M^{\alpha}(N^{1-a} k^{\alpha} + M^{1-a})^2}. \]

2.2. Cooperation

Consider the case of cooperation. Under the scenario in which one of the players (the leading player or a central planner) in each group will determine the optimal investments of each player in his group. The objective function for group 1 would be to maximize:

\[\sum_{i} E(U_{ic}) = \frac{\sum_{i=1}^{N} x_i^{ic\alpha}}{\sum_{i=1}^{N} x_i^{ic\alpha} + \sum_{i=1}^{M} y_j^{jc\alpha}} Nn - \sum_{i=1}^{N} x_i^{ic} \]

(6)

and in the case of group 2:
\[
\sum E(U_{j_e}) = \frac{\sum_{i=1}^{M} x_{i}^a}{\sum_{i=1}^{M} x_{i}^a + \sum_{j=1}^{N} y_{j}^a} Mm - \sum_{j=1}^{M} y_{j}^a.
\]

The Nash equilibrium investments of each player in both groups will equal:

\[
x^{\ast}_{i} = \frac{cank^{\alpha}NM}{(Nk^{\alpha} + M)^2} \quad (i = 1, \ldots, N) \quad \text{and} \quad y^{\ast}_{j} = \frac{cank^{\alpha}NM}{(Nk^{\alpha} + M)^2} \quad (j = 1, \ldots, M)
\]

and the equilibrium expected payoffs becomes:

\[
E(U^{\ast}_{i}) = \frac{Nnk^{\alpha}[Nk^{\alpha} + M(1 - \alpha)]}{(Nk^{\alpha} + M)^2}
\]

\[
E(U^{\ast}_{j_e}) = \frac{Mm[M + Nk^{\alpha}(1 - \alpha)]}{(Nk^{\alpha} + M)^2}.
\]

2.3. Comparison

Let us now compare the investments in both of the cases and see if it is possible that, under cooperation, the players will invest less effort than without cooperation. The investment under cooperation is lower than with no cooperation, \(x^{\ast}_{i} > x^{\ast}_{i_c}\), if:

\[
\frac{cank^{\alpha}M^{1-\alpha}}{N^{\alpha} \left(N^{1-a} k^{\alpha} + M^{1-\alpha} \right)^2} > \frac{cank^{\alpha}NM}{(Nk^{\alpha} + M)^2}.
\]

Writing (10) differently we obtain:

\[
\left(\frac{Nk^{\alpha} + M}{N^{1-a} k^{\alpha} + M^{1-\alpha}} \right)^2 > N^{1+\alpha} M^{\alpha}
\]

and after some manipulation (see appendix) we obtain:

\[
M(1 - N^{0.5a+0.5} M^{-0.5a}) > Nk^{\alpha} \left(N^{0.5-0.5a} M^{0.5a} - 1 \right)
\]

Inequality (11) may well hold. For example, if \(\alpha = 0.5\), \(N = 2\), \(M = 32\), and \(k = 4\), we obtain that inequality (11) becomes \(18 > 16\). On the other hand, \(y^{\ast}_{j} < y^{\ast}_{j_e}\). This
means that for group 1 we obtain higher levels of investment than under no cooperation, and for group 2 we obtain Easy-riding.\(^7\)

Proposition 1:

(a) a necessary condition for \(x_i^* > x_c^*\) is \(M > N^{1+\frac{1}{\alpha}}\).

(b) a sufficient condition for \(x_i^* > x_c^*\) is that \(M\) is sufficiently large

For proof see appendix.

The question that comes up is why for a sufficiently large number of players in group 2, \(M\), the effort of each player in group 1 under no cooperation is greater than with cooperation? To answer this question let us consider the following two situations:

1. Under cooperation, if group 2 is sufficiently large (\(M\) is sufficiently large), increasing the size of this group also increases the total effort of the group even though the effort of each player has decreased.\(^8\) Thus, the increase in the size of the group overcompensates for the decrease in the investment of each player. This means that the central planner of group 2 takes advantage of the increase in the size of the group and decreases the investment of each of its players. As a result of the increase in the total effort invested by group 2, and the increase in its size, the central planner of group 1 "substantially" decreases the total effort of his group;\(^9\) therefore, the effort of each player in his group decreases.\(^10\)

\(^7\) Since investments are not zero, we consider this to be easy-riding, see Cornes and Sandler (1984).

\[\frac{\partial}{\partial M} \left(\sum_{j} \frac{M}{y_{ic}} \right) > 0 \quad \text{if and only if} \quad k^\alpha N < M \] \[\frac{\partial}{\partial M} \left(\sum_{i} x_{ic}^* \right) < 0 \quad \text{and} \quad \frac{\partial}{\partial M} x_{jc}^* < 0 \quad \text{if and only if} \quad k^\alpha N < M \] \(^8\) The "larger" group can take advantage of its position by increasing its investment, and, as a result, the "smaller" group decreases its investment. This result has the same type of flavor as the result presented in Epstein and Nitzan (2006) where increasing both players' stakes may increase the effort invested by the players.
2. In the case of no cooperation, and when the number of players in group 2 increases (M increases), each player in the group decreases effort (easy riding) - the intensity of this reduction depends on the size of the group. If M is sufficiently large, then increases in the size of the group will also raise the level of the free riding and thus decrease the total investment made by the group.11 This means that the affect of the decrease in the effort of each player dominates the increase in the size of the group. The increase in M results in a decrease in the effort of each player in group 1 and therefore in the total effort of group 1.12 However, since there is no coordination in group 1, and each player easy-rides, the decrease in the investments of this group (and therefore by each player) will be "moderate" in comparison to the first case because group 2 has decreased its efforts. This is also reflected in a "moderate" decrease in the winning probability.

A lower boundary to the expression $\left(1 + \frac{1}{\alpha}\right)$ is 2; thus, from Proposition 1 we may conclude the following Corollaries:

Corollary 1: If $x_i^* > x_i^{**}$ then $M > N^2$.

Corollary 2: If $M \leq N^{\frac{1}{1+\alpha}}$ then $x_i^* \leq x_i^{**}$ independent on the values of m and n.

Corollary 3: If $x_i^* > x_i^{**}$ then $y_j^* \leq y_j^{**}$.

Corollary 3 is a direct outcome of Corollary 1. Let us consider the following proof using a contradicting argument: Assume that when $x_i^* > x_i^{**}$ it holds that $y_j^* > y_j^{**}$. In order for this to hold true, by Corollary 1, since $x_i^* > x_i^{**}$ and $y_j^* > y_j^{**}$, it holds that $M > N^2$ and $N > M^2$, respectively. It is clear that both inequalities cannot be true at

\[\frac{\partial y_j^*}{\partial M} < 0, \quad \frac{\partial}{\partial M} \left(\sum_{j=1}^{M} y_j^* \right) < 0 \text{ if and only if } k^{1-\alpha} N < M. \]

\[\frac{\partial x_i^*}{\partial M} < 0 \text{ and } \frac{\partial}{\partial M} \sum_{i=1}^{N} x_i^* < 0 \text{ if and only if } k^{1-\alpha} N < M. \]
the same time. Thus, if the investment of a group under non-cooperative is higher than under cooperative, then the opposite would hold for the other group.

Proposition 2: If \(x_i^* > x_{ic}^* \) then \(E(U_1^*) > E(U_{ic}^*) \).

For proof see appendix.

Proposition 2 states that in the case where group 1 invests more effort than the amount that would have been invested under cooperation, we would obtain that the expected payoff of each player in group 1 would be higher than that of cooperation \((E(U_1^*) > E(U_{ic}^*)) \). Let us explain this result. From proposition 1 and corollary 3 we obtain that when we have cooperation, and group 2 is sufficiently large, the central planner of group 2 uses its advantage with regard to the group's size increasing the effort of each player in the group relatively to what they would have invested under no cooperation. Therefore, moving from cooperation to no cooperation, the winning probability of group 2 decreases, and the winning probability of group 1 increases.\(^{13}\) Indeed, the effort of each player in group 1 has increased (proposition 1); however, the increase in the probability dominates the increase in efforts and thus the expected payoff is also increased.

To conclude: Our main results show that for one of the groups, the sufficient condition to invest more under cooperation than under no cooperation is that the number of players in the other group has to be sufficiently large. Moreover, in the case where each player in one of the groups invests more effort than the amount that would have been invested under cooperation, we would obtain that the expected payoff of each player in this group would be higher than in the case of cooperation.

\(^{13}\)The winning probability of group 1 increases from moving from cooperation to no cooperation if and only if \(M > N \).
References

Appendix

Proof of Proposition 1:

Part (a): From (11) we take the square root from both sides and obtain

$$\frac{Nk^\alpha + M}{N^{1-\alpha} k^\alpha + M^{1-\alpha}} > N^{0.5+0.5\alpha} M^{0.5\alpha}$$

Multiply both sides by $\left(N^{1-\alpha} k^\alpha + M^{1-\alpha} \right)$ we obtain

$$Nk^\alpha + M > N^{0.5+0.5\alpha} M^{0.5\alpha} \left(N^{1-\alpha} k^\alpha + M^{1-\alpha} \right)$$

Thus:

$$Nk^\alpha + M > N^{1.5-0.5\alpha} k^\alpha + N^{0.5\alpha+0.5} M^{1-0.5\alpha}$$

Rewriting the inequality

$$M - N^{0.5\alpha+0.5} M^{1-0.5\alpha} > N^{1.5-0.5\alpha} M^{0.5\alpha} k^\alpha - Nk^\alpha$$

Thus

$$M \left(1 - N^{0.5\alpha+0.5} M^{-0.5\alpha} \right) > Nk^\alpha \left(N^{0.5\alpha} M^{0.5\alpha} - 1 \right)$$

Since $0 < \alpha < 1$ then $N^{0.5-0.5\alpha} M^{0.5\alpha} > 1$ therefore the right hand side of the above inequality is positive. A necessary condition for (11) is that the left hand side is also positive; thus, $1 > N^{0.5\alpha+0.5} M^{-0.5\alpha} \alpha$ which is identical to $M > N^{1-1\alpha}$.

Part (b) dividing (11) by $M^{2\alpha}$ we obtain

$$\frac{1}{\frac{M^{2\alpha}}{N^{1-\alpha} k^\alpha + M^{1-\alpha}}} < \frac{N^{1+\alpha}}{M^{\alpha}}$$

Rewriting the inequality we obtain

$$\left[\frac{Nk^\alpha + M}{M^{\alpha} \left(N^{1-\alpha} k^\alpha + M^{1-\alpha} \right)} \right]^2 > \frac{N^{1+\alpha}}{M^{\alpha}}$$

Thus

$$\left(\frac{Nk^\alpha + M}{M^{\alpha} N^{1-\alpha} k^\alpha + M} \right)^2 > \frac{N^{1+\alpha}}{M^{\alpha}}$$

Divide the nominator and denominator in the brackets of the LHS by M:

$$\left(\frac{Nk^\alpha + 1}{M^{1-\alpha} k^\alpha + 1} \right)^2 > \frac{N^{1+\alpha}}{M^{\alpha}}$$

As we can see for $M \to \infty$ the LHS converges to 1 and the RHS to 0. ■
Proof of Proposition 2:

$E(U_i^*) > E(U^*_w)$ is identical to

$$\left(\frac{Nk^\alpha + M}{N^{1-\alpha} k^\alpha + M^{1-\alpha}} \right)^2 > \frac{N^{1+\alpha} \left[Nk^\alpha + M(1-\alpha) \right]}{N^{2-\alpha} k^\alpha + M^{1-\alpha} (N-\alpha)}.$$ Also $x_i^* > x_w^*$ is identical to inequality (11). We will show that the right hand side of inequality (11) is larger than the right hand side of

$$\left(\frac{Nk^\alpha + M}{N^{1-\alpha} k^\alpha + M^{1-\alpha}} \right)^2 > \frac{N^{1+\alpha} \left[Nk^\alpha + M(1-\alpha) \right]}{N^{2-\alpha} k^\alpha + M^{1-\alpha} (N-\alpha)},$$

and by that we have proven our proposition.

$N^{\alpha+1} M^\alpha > \frac{N^{1+\alpha} \left[Nk^\alpha + M(1-\alpha) \right]}{N^{2-\alpha} k^\alpha + M^{1-\alpha} (N-\alpha)}$ is identical to $Nk^\alpha \left(N^{1-\alpha} M^\alpha - 1 \right) > M(1-N)$. The left hand side of this inequality is positive while the right hand side is negative.

\blacksquare
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-01</td>
<td>מודל המגעים והיותיו ה.swapים</td>
<td>יעקוב וושבר, פברואר 2001.</td>
<td></td>
</tr>
</tbody>
</table>

Electronic versions of the papers are available at http://www.biu.ac.il/soc/ec/wp/working_papers.html
12-01 Network Topology and the Efficiency of Equilibrium

13-01 General Equilibrium Pricing of Trading Strategy Risk

14-01 Social Conformity and Child Labor

15-01 Determinants of Railroad Capital Structure, 1830–1885

16-01 Political-Legal Institutions and the Railroad Financing Mix, 1885–1929

17-01 Macroeconomic Instability, Migration, and the Option Value of Education

18-01 Property Rights, Theft, and Efficiency: The Biblical Waiver of Fines in the Case of Confessed Theft
Eliakim Katz and Jacob Rosenberg, November 2001.

19-01 Ethnic Discrimination and the Migration of Skilled Labor
Frédéric Docquier and Hillel Rapoport, December 2001.

1-02 Can Vocational Education Improve the Wages of Minorities and Disadvantaged Groups? The Case of Israel
Shoshana Neuman and Adrian Ziderman, February 2002.

2-02 What Can the Price Gap between Branded and Private Label Products Tell Us about Markups?

3-02 Holiday Price Rigidity and Cost of Price Adjustment

4-02 Computation of Completely Mixed Equilibrium Payoffs
Igal Milchtaich, March 2002.

5-02 Coordination and Critical Mass in a Network Market – An Experimental Evaluation
6-02 Inviting Competition to Achieve Critical Mass
Amir Etziony and Avi Weiss, April 2002.

7-02 Credibility, Pre-Production and Inviting Competition in a Network Market
Amir Etziony and Avi Weiss, April 2002.

8-02 Brain Drain and LDCs’ Growth: Winners and Losers
Michel Beine, Frédéric Docquier, and Hillel Rapoport, April 2002.

9-02 Heterogeneity in Price Rigidity: Evidence from a Case Study Using Micro-Level Data

10-02 Price Flexibility in Channels of Distribution: Evidence from Scanner Data

11-02 Acquired Cooperation in Finite-Horizon Dynamic Games
Igal Milchtaich and Avi Weiss, April 2002.

12-02 Cointegration in Frequency Domain

13-02 Which Voting Rules Elicit Informative Voting?
Ruth Ben-Yashar and Igal Milchtaich, May 2002.

14-02 Fertility, Non-Altruism and Economic Growth: Industrialization in the Nineteenth Century
Elise S. Brezis, October 2002.

15-02 Changes in the Recruitment and Education of the Power Elites in Twentieth Century Western Democracies
Elise S. Brezis and François Crouzet, November 2002.

16-02 On the Typical Spectral Shape of an Economic Variable

17-02 International Evidence on Output Fluctuation and Shock Persistence

1-03 Topological Conditions for Uniqueness of Equilibrium in Networks
Igal Milchtaich, March 2003.

2-03 Is the Feldstein-Horioka Puzzle Really a Puzzle?
3-03 Growth and Convergence across the US: Evidence from County-Level Data
Matthew Higgins, Daniel Levy, and Andrew Young, June 2003.

4-03 Economic Growth and Endogenous Intergenerational Altruism
Hillel Rapoport and Jean-Pierre Vidal, June 2003.

5-03 Remittances and Inequality: A Dynamic Migration Model
Frédéric Docquier and Hillel Rapoport, June 2003.

6-03 Sigma Convergence Versus Beta Convergence: Evidence from U.S. County-Level Data

7-03 Managerial and Customer Costs of Price Adjustment: Direct Evidence from Industrial Markets

8-03 First and Second Best Voting Rules in Committees
Ruth Ben-Yashar and Igal Milchtaich, October 2003.

9-03 Shattering the Myth of Costless Price Changes: Emerging Perspectives on Dynamic Pricing

1-04 Heterogeneity in Convergence Rates and Income Determination across U.S. States: Evidence from County-Level Data

2-04 “The Real Thing:” Nominal Price Rigidity of the Nickel Coke, 1886-1959

3-04 Network Effects and the Dynamics of Migration and Inequality: Theory and Evidence from Mexico
David Mckenzie and Hillel Rapoport, March 2004.

4-04 Migration Selectivity and the Evolution of Spatial Inequality

5-04 Many Types of Human Capital and Many Roles in U.S. Growth: Evidence from County-Level Educational Attainment Data
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-04</td>
<td>Comparative Statics of Altruism and Spite</td>
<td>Igal Milchtaich</td>
<td>June 2004</td>
</tr>
<tr>
<td>1-05</td>
<td>Private Label Price Rigidity during Holiday Periods</td>
<td>Georg Müller, Mark Bergen, Shantanu Dutta and Daniel Levy</td>
<td>March 2005</td>
</tr>
<tr>
<td>3-05</td>
<td>Beyond the Cost of Price Adjustment: Investments in Pricing Capital</td>
<td>Mark Zbaracki, Mark Bergen, Shantanu Dutta, Daniel Levy and Mark Ritson</td>
<td>May 2005</td>
</tr>
<tr>
<td>4-05</td>
<td>Explicit Evidence on an Implicit Contract</td>
<td>Andrew T. Young and Daniel Levy</td>
<td>June 2005</td>
</tr>
<tr>
<td>5-05</td>
<td>Popular Perceptions and Political Economy in the Contrived World of Harry Potter</td>
<td>Avichai Snir and Daniel Levy</td>
<td>September 2005</td>
</tr>
<tr>
<td>6-05</td>
<td>Growth and Convergence across the US: Evidence from County-Level Data (revised version)</td>
<td>Matthew J. Higgins, Daniel Levy, and Andrew T. Young</td>
<td>September 2005</td>
</tr>
<tr>
<td>1-06</td>
<td>Sigma Convergence Versus Beta Convergence: Evidence from U.S. County-Level Data (revised version)</td>
<td>Andrew T. Young, Matthew J. Higgins, and Daniel Levy</td>
<td>June 2006</td>
</tr>
<tr>
<td>2-06</td>
<td>Price Rigidity and Flexibility: Recent Theoretical Developments</td>
<td>Daniel Levy</td>
<td>September 2006</td>
</tr>
</tbody>
</table>
4–06 **Holiday Non-Price Rigidity and Cost of Adjustment**
Georg Müller, Mark Bergen, Shantanu Dutta, and Daniel Levy.
September 2006.

2008–01 **Weighted Congestion Games With Separable Preferences**
Igal Milchtaich, October 2008.

2008–02 **Federal, State, and Local Governments: Evaluating their Separate Roles in US Growth**

2008–03 **Political Profit and the Invention of Modern Currency**
Dror Goldberg, December 2008.

2008–04 **Static Stability in Games**
Igal Milchtaich, December 2008.

2008–05 **Comparative Statics of Altruism and Spite**
Igal Milchtaich, December 2008.

2008–06 **Abortion and Human Capital Accumulation: A Contribution to the Understanding of the Gender Gap in Education**

2008–07 **Involuntary Integration in Public Education, Fertility and Human Capital**

2009–01 **Inter-Ethnic Redistribution and Human Capital Investments**
Leonid V. Azarnert, January 2009.

2009–02 **Group Specific Public Goods, Orchestration of Interest Groups and Free Riding**
Gil S. Epstein and Yosef Mealem, January 2009.

2009–03 **Holiday Price Rigidity and Cost of Price Adjustment**
Daniel Levy, Haipeng Chen, Georg Müller, Shantanu Dutta, and Mark Bergen,
February 2009.

2009–04 **Legal Tender**
Dror Goldberg, April 2009.

2009–05 **The Tax-Foundation Theory of Fiat Money**
Dror Goldberg, April 2009.
2009-06 The Inventions and Diffusion of Hyperinflatable Currency
 Dror Goldberg, April 2009.

2009-07 The Rise and Fall of America’s First Bank
 Dror Goldberg, April 2009.

2009-08 Judicial Independence and the Validity of Controverted Elections
 Raphaël Franck, April 2009.

2009-09 A General Index of Inherent Risk
 Adi Schnytzer and Sara Westreich, April 2009.

2009-10 Measuring the Extent of Inside Trading in Horse Betting Markets
 Adi Schnytzer, Martien Lamers and Vasiliki Makropoulou, April 2009.

2009-11 The Impact of Insider Trading on Forecasting in a Bookmakers’ Horse
 Betting Market
 Adi Schnytzer, Martien Lamers and Vasiliki Makropoulou, April 2009.

2009-12 Foreign Aid, Fertility and Population Growth: Evidence from Africa
 Leonid V. Azarnert, April 2009.

2009-13 A Reevaluation of the Role of Family in Immigrants’ Labor Market
 Activity: Evidence from a Comparison of Single and Married Immigrants

2009-14 The Efficient and Fair Approval of “Multiple-Cost–Single-Benefit”
 Projects Under Unilateral Information
 Nava Kahanana, Yosef Mealem and Shmuel Nitzan, May 2009.

2009-15 Après nous le Déluge: Fertility and the Intensity of Struggle against
 Immigration
 Leonid V. Azarnert, June 2009.

2009-16 Is Specialization Desirable in Committee Decision Making?

2009-17 Framing-Based Choice: A Model of Decision-Making Under Risk
 Kobi Kriesler and Shmuel Nitzan, June 2009.

2009-18 Demystifying the ‘Metric Approach to Social Compromise with the
 Unanimity Criterion’
 Shmuel Nitzan, June 2009.
2009-19 **On the Robustness of Brain Gain Estimates**
Michel Beine, Frédéric Docquier and Hillel Rapoport, July 2009.

2009-20 **Wage Mobility in Israel: The Effect of Sectoral Concentration**
Ana Rute Cardoso, Shoshana Neuman and Adrian Ziderman, July 2009.

Shoshana Neuman and Adrian Ziderman, July 2009.

2009-22 **National Aggregates and Individual Disaffiliation: An International Study**

2009-23 **The Big Carrot: High-Stakes Incentives Revisited**

2009-24 **The Why, When and How of Immigration Amnesties**
Gil S. Epstein and Avi Weiss, September 2009.

2009-25 **Documenting the Brain Drain of «la Crème de la Crème»: Three Case-Studies on International Migration at the Upper Tail of the Education Distribution**
Frédéric Docquier and Hillel Rapoport, October 2009.

2009-26 **Remittances and the Brain Drain Revisited: The Microdata Show That More Educated Migrants Remit More**
Albert Bollard, David McKenzie, Melanie Morten and Hillel Rapoport, October 2009.

2009-27 **Implementability of Correlated and Communication Equilibrium Outcomes in Incomplete Information Games**
Igal Milchtaich, November 2009.

2010-01 **The Ultimatum Game and Expected Utility Maximization – In View of Attachment Theory**
Shaul Almakias and Avi Weiss, January 2010.

2010-02 **A Model of Fault Allocation in Contract Law – Moving From Dividing Liability to Dividing Costs**
Osnat Jacobi and Avi Weiss, January 2010.
2010-03 Coordination and Critical Mass in a Network Market: An Experimental Investigation

2010-04 Immigration, fertility and human capital: A model of economic decline of the West
Leonid V. Azarnert, April 2010.

2010-05 Is Skilled Immigration Always Good for Growth in the Receiving Economy?
Leonid V. Azarnert, April 2010.

2010-06 The Effect of Limited Search Ability on the Quality of Competitive Rent-Seeking Clubs

2010-07 Condorcet vs. Borda in Light of a Dual Majoritarian Approach
Eyal Baharad and Shmuel Nitzan, April 2010.

2010-08 Prize Sharing in Collective Contests
Shmuel Nitzan and Kaoru Ueda, April 2010.

2010-09 Network Topology and Equilibrium Existence in Weighted Network Congestion Games
Igal Milchtaich, May 2010.

2010-10 The Evolution of Secularization: Cultural Transmission, Religion and Fertility Theory, Simulations and Evidence

2010-11 The Economics of Collective Brands

2010-12 Interactions Between Local and Migrant Workers at the Workplace
Gil S. Epstein and Yosef Mealem, August 2010.

2010-13 A Political Economy of the Immigrant Assimilation: Internal Dynamics
Gil S. Epstein and Ira N. Gang, August 2010.

2010-14 Attitudes to Risk and Roulette
Adi Schnytzer and Sara Westreich, August 2010.
2010-15 Life Satisfaction and Income Inequality
Paolo Verme, August 2010.

2010-16 The Poverty Reduction Capacity of Private and Public Transfers in Transition
Paolo Verme, August 2010.

2010-17 Migration and Culture
Gil S. Epstein and Ira N. Gang, August 2010.

2010-18 Political Culture and Discrimination in Contests
Gil S. Epstein, Yosef Mealem and Shmuel Nitzan, October 2010.

2010-19 Governing Interest Groups and Rent Dissipation
Gil S. Epstein and Yosef Mealem, November 2010.

2010-20 Beyond Condorcet: Optimal Aggregation Rules Using Voting Records
Eyal Baharad, Jacob Goldberger, Moshe Koppel and Shmuel Nitzan, December 2010.

2010-21 Price Points and Price Rigidity

2010-22 Price Setting and Price Adjustment in Some European Union Countries: Introduction to the Special Issue

2011-01 Business as Usual: A Consumer Search Theory of Sticky Prices and Asymmetric Price Adjustment
Luís Cabral and Arthur Fishman, January 2011.

2011-02 Emigration and democracy
Frédéric Docquier, Elisabetta Lodigiani, Hillel Rapoport and Maurice Schiff, January 2011.

2011-03 Shrinking Goods and Sticky Prices: Theory and Evidence
Avichai Snir and Daniel Levy, March 2011.

2011-04 Search Costs and Risky Investment in Quality
2011-05 To What Extent do Investors in a Financial Market Anchor Their Judgments? Evidence from the Hong Kong Horserace Betting Market
Johnnie E.V. Johnson, Shuang Liu and Adi Schnytzer, March 2011.

2011-06 Attitudes to Risk and Roulette
Adi Schnytzer and Sara Westreich, March 2011.

2011-07 False Consciousness in Financial Markets: Or is it in Ivory Towers?
Adi Schnytzer and Sara Westreich, March 2011.

2011-08 Herding in Imperfect Betting Markets with Inside Traders
Adi Schnytzer and Avichai Snir, March 2011.

2011-09 Painful Regret and Elation at the Track
Adi Schnytzer and Barbara Luppi, March 2011.

2011-10 The Regression Tournament: A Novel Approach to Prediction Model Assessment
Adi Schnytzer and Janez Šušteršič, March 2011.

2011-11 Shorting the Bear: A Test of Anecdotal Evidence of Insider Trading in Early Stages of the Sub-Prime Market Crisis
Les Coleman and Adi Schnytzer, March 2011.

2011-12 SP Betting as a Self-Enforcing Implicit Cartel
Adi Schnytzer and Avichai Snir, March 2011.

2011-13 Testing for Home Team and Favorite Biases in the Australian Rules Football Fixed Odds and Point Spread Betting Markets
Adi Schnytzer and Guy Weinberg, March 2011.

2011-14 The Impact of Insider Trading on Forecasting in a Bookmakers’ Horse Betting Market
Adi Schnytzer, Martien Lamers and Vasiliki Makropoulou, March 2011.

2011-15 The Prediction Market for the Australian Football League
Adi Schnytzer, March 2011.

2011-16 Information and Attitudes to Risk at the Track
Adi Schnytzer and Sara Westreich, March 2011.

2011-17 Explicit Evidence on an Implicit Contract
Andrew T. Young and Daniel Levy, March 2011.
<table>
<thead>
<tr>
<th>Year-Number</th>
<th>Title</th>
<th>Authors and Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-19</td>
<td>The Impact of Worker Effort on Public Sentiment Towards Temporary Migrants</td>
<td>Gil S. Epstein and Alessandra Venturini, April 2011.</td>
</tr>
<tr>
<td>2011-23</td>
<td>Privilege-Seeking Activities in Organizational Politics and Its Effect on More Productive Employees</td>
<td>Gil S. Epstein and Bruce C. Herniter, August 2011.</td>
</tr>
<tr>
<td>2011-28</td>
<td>Cooperation and Effort in Group Contests</td>
<td>Gil S. Epstein and Yosef Mealem, November 2011.</td>
</tr>
</tbody>
</table>